Hierarchical recursive least squares algorithms for Hammerstein nonlinear autoregressive output-error systems

被引:83
|
作者
Kang, Zhen [1 ]
Ji, Yan [1 ]
Liu, Ximei [1 ]
机构
[1] Qingdao Univ Sci & Technol, Coll Automat & Elect Engn, Qingdao 266061, Peoples R China
基金
中国国家自然科学基金;
关键词
hierarchical identification principle; least squares; nonlinear system; parameter estimation; recursive identification; PARAMETER-ESTIMATION; IDENTIFICATION METHOD; COLLISION-AVOIDANCE; BILINEAR-SYSTEMS; TRACKING CONTROL; FAULT-DIAGNOSIS; STATE; MATRIX;
D O I
10.1002/acs.3320
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article considers the parameter estimation problem of Hammerstein nonlinear autoregressive output-error systems with autoregressive moving average noises. Applying the key term separation technique, the original system is decomposed into three subsystems: the first subsystem contains the unknown parameters related to the output, the second subsystem contains the unknown parameters related to the input, and the third subsystem contains the unknown parameters related to the noise model. A hierarchical recursive least squares algorithm is proposed based on the hierarchical identification principle for interactively identifying each subsystem. The simulation results confirm that the proposed algorithm is effective in estimating the parameters of Hammerstein nonlinear autoregressive output-error systems.
引用
收藏
页码:2276 / 2295
页数:20
相关论文
共 50 条
  • [1] Recursive and Iterative Least Squares Parameter Estimation Algorithms for Multiple-Input–Output-Error Systems with Autoregressive Noise
    Jiling Ding
    [J]. Circuits, Systems, and Signal Processing, 2018, 37 : 1884 - 1906
  • [2] Hierarchical Least Squares Identification for Hammerstein Nonlinear Controlled Autoregressive Systems
    Huibo Chen
    Feng Ding
    [J]. Circuits, Systems, and Signal Processing, 2015, 34 : 61 - 75
  • [3] Hierarchical Least Squares Identification for Hammerstein Nonlinear Controlled Autoregressive Systems
    Chen, Huibo
    Ding, Feng
    [J]. CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2015, 34 (01) : 61 - 75
  • [4] Filtering Based Multi-Stage Recursive Least Squares Parameter Estimation Algorithm for Input Nonlinear Output-Error Autoregressive Systems
    Ma Junxia
    Chen Jing
    Ding Feng
    [J]. PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 1921 - 1925
  • [5] Maximum likelihood interval-varying recursive least squares identification for output-error autoregressive systems with scarce measurements
    Li, Shutong
    Ji, Yan
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2023, 360 (11): : 7230 - 7246
  • [6] Auxiliary model-based recursive least squares and stochastic gradient algorithms and convergence analysis for feedback nonlinear output-error systems
    Miao, Guangqin
    Yang, Dan
    Ding, Feng
    [J]. INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2024,
  • [7] Two-stage Recursive Least Squares Parameter Estimation Algorithm for Multivariate Output-error Autoregressive Moving Average Systems
    Guo, Yunze
    Wan, Lijuan
    Xu, Ling
    Ding, Feng
    Alsaedi, Ahmed
    Hayat, Tasawar
    [J]. INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2019, 17 (06) : 1547 - 1557
  • [8] Two-stage Recursive Least Squares Parameter Estimation Algorithm for Multivariate Output-error Autoregressive Moving Average Systems
    Yunze Guo
    Lijuan Wan
    Ling Xu
    Feng Ding
    Ahmed Alsaedi
    Tasawar Hayat
    [J]. International Journal of Control, Automation and Systems, 2019, 17 : 1547 - 1557
  • [9] Decomposition based recursive least squares parameter estimation for Hammerstein nonlinear controlled autoregressive systems
    Chen, Huibo
    Ding, Feng
    [J]. 2013 AMERICAN CONTROL CONFERENCE (ACC), 2013, : 2436 - 2441
  • [10] Auxiliary model-based least-squares identification methods for Hammerstein output-error systems
    Ding, Feng
    Shi, Yang
    Chen, Tongwen
    [J]. SYSTEMS & CONTROL LETTERS, 2007, 56 (05) : 373 - 380