Kernel regression in mixed feature spaces for spatio-temporal saliency detection

被引:24
|
作者
Li, Yansheng [1 ]
Tan, Yihua [1 ]
Yu, Jin-Gang [1 ]
Qi, Shengxiang [1 ]
Tian, Jinwen [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Automat, Wuhan 430074, Peoples R China
关键词
Spatio-temporal saliency; Kernel regression; Mixed feature spaces; Hybrid fusion strategy; MOTION; IMAGE; VIDEO; MODEL; V1;
D O I
10.1016/j.cviu.2015.01.011
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Spatio-temporal saliency detection has attracted lots of research interests due to its competitive performance on wide multimedia applications. For spatio-temporal saliency detection, existing bottom-up algorithms often over-simplify the fusion strategy, which results in the inferior performance than the human vision system. In this paper, a novel bottom-up spatio-temporal saliency model is proposed to improve the accuracy of attentional region estimation in videos through fully exploiting the merit of fusion. In order to represent the space constructed by several types of features such as location, appearance and temporal cues extracted from video, kernel regression in mixed feature spaces (KR-MFS) including three approximation entity-models is proposed. Using KR-MFS, a hybrid fusion strategy which considers the combination of spatial and temporal saliency of each individual unit and incorporates the impacts from the neighboring units is presented and embedded into the spatio-temporal saliency model. The proposed model has been evaluated on the publicly available dataset. Experimental results show that the proposed spatio-temporal saliency model can achieve better performance than the state-of-the-art approaches. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:126 / 140
页数:15
相关论文
共 50 条
  • [31] Spatio-Temporal Saliency Detection in Dynamic Scenes using Local Binary Patterns
    Muddamsetty, Satya M.
    Sidibe, Desire
    Tremeau, Alain
    Meriaudeau, Fabrice
    [J]. 2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, : 2353 - 2358
  • [32] Mixed geographically and temporally weighted regression for spatio-temporal deformation modelling
    Yang, Zhijia
    Dai, Wujiao
    Yu, Wenkun
    Shi, Qiang
    Santerre, Rock
    [J]. SURVEY REVIEW, 2022, 54 (385) : 290 - 300
  • [33] Spatio-temporal expectile regression models
    Spiegel, Elmar
    Kneib, Thomas
    Otto-Sobotka, Fabian
    [J]. STATISTICAL MODELLING, 2020, 20 (04) : 386 - 409
  • [34] SALIENCY TUBES: VISUAL EXPLANATIONS FOR SPATIO-TEMPORAL CONVOLUTIONS
    Stergiou, Alexandros
    Kapidis, Georgios
    Kalliatakis, Grigorios
    Chrysoulas, Christos
    Veltkamp, Remco
    Poppe, Ronald
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 1830 - 1834
  • [35] Parallel implementation of a spatio-temporal visual saliency model
    Rahman, A.
    Houzet, D.
    Pellerin, D.
    Marat, S.
    Guyader, N.
    [J]. JOURNAL OF REAL-TIME IMAGE PROCESSING, 2011, 6 (01) : 3 - 14
  • [36] Online hash tracking with spatio-temporal saliency auxiliary
    Fang, Jianwu
    Xu, Hongke
    Wang, Qi
    Wu, Tianjun
    [J]. COMPUTER VISION AND IMAGE UNDERSTANDING, 2017, 160 : 57 - 72
  • [37] SalCrop: Spatio-temporal Saliency Based Video Cropping
    Zhang, Kao
    Shang, Yan
    Li, Songnan
    Liu, Shan
    Chen, Zhenzhong
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP), 2022,
  • [38] Video saliency prediction via spatio-temporal reasoning
    Chen, Jiazhong
    Li, Zongyi
    Jin, Yi
    Ren, Dakai
    Ling, Hefei
    [J]. NEUROCOMPUTING, 2021, 462 : 59 - 68
  • [39] Parallel implementation of a spatio-temporal visual saliency model
    A. Rahman
    D. Houzet
    D. Pellerin
    S. Marat
    N. Guyader
    [J]. Journal of Real-Time Image Processing, 2011, 6 : 3 - 14
  • [40] Spatio-temporal scale-spaces
    Fagerstrom, Daniel
    [J]. Scale Space and Variational Methods in Computer Vision, Proceedings, 2007, 4485 : 326 - 337