Parallel implementation of a spatio-temporal visual saliency model

被引:15
|
作者
Rahman, A. [1 ]
Houzet, D. [1 ]
Pellerin, D.
Marat, S.
Guyader, N.
机构
[1] GIPSA Lab, Grenoble INP, Grenoble, France
关键词
Visual saliency; Spatio-temporal model; Parallel implementation; Graphics processors; ARCHITECTURE; ATTENTION; GRAPHICS;
D O I
10.1007/s11554-010-0164-7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The human vision has been studied deeply in the past years, and several different models have been proposed to simulate it on computer. Some of these models concerns visual saliency which is potentially very interesting in a lot of applications like robotics, image analysis, compression, video indexing. Unfortunately they are compute intensive with tight real-time requirements. Among all the existing models, we have chosen a spatio-temporal one combining static and dynamic information. We propose in this paper a very efficient implementation of this model with multi-GPU reaching real-time. We present the algorithms of the model as well as several parallel optimizations on GPU with higher precision and execution time results. The real-time execution of this multi-path model on multi-GPU makes it a powerful tool to facilitate many vision related applications.
引用
收藏
页码:3 / 14
页数:12
相关论文
共 50 条
  • [1] Parallel implementation of a spatio-temporal visual saliency model
    A. Rahman
    D. Houzet
    D. Pellerin
    S. Marat
    N. Guyader
    [J]. Journal of Real-Time Image Processing, 2011, 6 : 3 - 14
  • [2] Dynamic Saliency Model Inspired by Middle Temporal Visual Area: A Spatio-Temporal Perspective
    Mahmood, Hassan
    Gilani, Syed Omer
    Islam, Syed Mohammed Shamsul
    Ayaz, Yasar
    [J]. 2018 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA), 2018, : 324 - 331
  • [3] SALIENCY TUBES: VISUAL EXPLANATIONS FOR SPATIO-TEMPORAL CONVOLUTIONS
    Stergiou, Alexandros
    Kapidis, Georgios
    Kalliatakis, Grigorios
    Chrysoulas, Christos
    Veltkamp, Remco
    Poppe, Ronald
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 1830 - 1834
  • [4] SPATIO-TEMPORAL SALIENCY BASED ON RARE MODEL
    Decombas, Marc
    Riche, Nicolas
    Dufaux, Frederic
    Pesquet-Popescu, Beatrice
    Mancas, Matei
    Gosselin, Bernard
    Dutoit, Thierry
    [J]. 2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 3451 - 3455
  • [5] Spatio-Temporal Saliency Networks for Dynamic Saliency Prediction
    Bak, Cagdas
    Kocak, Aysun
    Erdem, Erkut
    Erdem, Aykut
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2018, 20 (07) : 1688 - 1698
  • [6] A perceptually based spatio-temporal computational framework for visual saliency estimation
    Koutras, Petros
    Maragos, Petros
    [J]. SIGNAL PROCESSING-IMAGE COMMUNICATION, 2015, 38 : 15 - 31
  • [7] Spatio-Temporal Saliency for Action Similarity
    Burghouts, G. J.
    van den Broek, S. P.
    ten Hove, R. J. M.
    [J]. 2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2013, : 257 - 262
  • [8] Spatio-temporal Saliency for Microscopic Medical Data
    Javid, Rakhshanda
    Riaz, M. Mohsin
    Ghafoor, Abdul
    Iqbal, Naveed
    [J]. 2019 INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION IN INDUSTRY (ICRAI), 2019,
  • [9] Pothole detection using spatio-temporal saliency
    Jang, Dong-Won
    Park, Rae-Hong
    [J]. IET INTELLIGENT TRANSPORT SYSTEMS, 2016, 10 (09) : 605 - 612
  • [10] STAViS: Spatio-Temporal AudioVisual Saliency Network
    Tsiami, Antigoni
    Koutras, Petros
    Maragos, Petros
    [J]. 2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 4765 - 4775