Online hash tracking with spatio-temporal saliency auxiliary

被引:17
|
作者
Fang, Jianwu [1 ,2 ]
Xu, Hongke [1 ]
Wang, Qi [3 ,4 ]
Wu, Tianjun [5 ]
机构
[1] Changan Univ, Sch Elect & Control Engn, Xian, Peoples R China
[2] Xi An Jiao Tong Univ, Inst Artificial Intelligence & Robot, Xian, Peoples R China
[3] Northwestern Polytech Univ, Sch Comp Sci, Xian, Peoples R China
[4] Northwestern Polytech Univ, Ctr OPT IMagery Anal & Learning OPTIMAL, Xian, Peoples R China
[5] Changan Univ, Coll Sci, Xian, Peoples R China
基金
中国国家自然科学基金;
关键词
Visual tracking; Spatio-temporal saliency; Online hash-code learning; Minimum barrier distance; VISUAL TRACKING; OBJECT TRACKING; BINARY-CODES; MODEL;
D O I
10.1016/j.cviu.2017.03.006
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose an online hashing tracking method with a further exploitation of spatiotemporal saliency for template sampling. Specifically, spatio-temporal saliency is firstly explored to make the sampled templates contain true object templates as much as possible. Then, different from the previous batch modes for hashing, the hashing function in this work is online learned by new pairs of collected templates received sequentially, in which the relationship between the positive templates and negative templates can be appropriately preserved that is more useful for visual tracking. With the hash coding for templates, the between-frame matching can be efficiently conducted. Besides, this work further builds a positive template pool as a memory buffer for object depiction, in which representative truly positive target templates are gathered and utilized to restrain the degradation of the appearance model due to the error accommodation in online hashing. Extensive experiments demonstrate that our tracker performs favorably against the state-of-the-art ones. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:57 / 72
页数:16
相关论文
共 50 条
  • [1] Airborne target tracking based on spatio-temporal saliency modeling
    Zhang, Weijun
    Zhong, Sheng
    Wang, Jianhui
    [J]. Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2020, 41 (03):
  • [2] Hybrid generative–discriminative hash tracking with spatio-temporal contextual cues
    Manna Dai
    Shuying Cheng
    Xiangjian He
    [J]. Neural Computing and Applications, 2018, 29 : 389 - 399
  • [3] Online visual tracking by integrating spatio-temporal cues
    He, Yang
    Pei, Mingtao
    Yang, Min
    Wu, Yuwei
    Jia, Yunde
    [J]. IET COMPUTER VISION, 2015, 9 (01) : 124 - 137
  • [4] Spatio-Temporal Saliency Networks for Dynamic Saliency Prediction
    Bak, Cagdas
    Kocak, Aysun
    Erdem, Erkut
    Erdem, Aykut
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2018, 20 (07) : 1688 - 1698
  • [5] Spatio-Temporal Saliency for Action Similarity
    Burghouts, G. J.
    van den Broek, S. P.
    ten Hove, R. J. M.
    [J]. 2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2013, : 257 - 262
  • [6] Hybrid generative-discriminative hash tracking with spatio-temporal contextual cues
    Dai, Manna
    Cheng, Shuying
    He, Xiangjian
    [J]. NEURAL COMPUTING & APPLICATIONS, 2018, 29 (02): : 389 - 399
  • [7] Online Convolutional Network Tracking via Spatio-Temporal Context
    Liu, Peizhong
    Wang, Hongxiang
    Luo, Yanmin
    Du, Yongzhao
    [J]. Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2018, 55 (12): : 2785 - 2793
  • [8] Online Spatio-temporal Structural Context Learning for Visual Tracking
    Wen, Longyin
    Cai, Zhaowei
    Lei, Zhen
    Yi, Dong
    Li, Stan Z.
    [J]. COMPUTER VISION - ECCV 2012, PT IV, 2012, 7575 : 716 - 729
  • [9] Online convolution network tracking via spatio-temporal context
    Wang, Hongxiang
    Liu, Peizhong
    Du, Yongzhao
    Liu, Xiaofang
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (01) : 257 - 270
  • [10] Online convolution network tracking via spatio-temporal context
    Hongxiang Wang
    Peizhong Liu
    Yongzhao Du
    Xiaofang Liu
    [J]. Multimedia Tools and Applications, 2019, 78 : 257 - 270