Holonomy of a principal composite bundle connection, non-Abelian geometric phases, and gauge theory of gravity

被引:7
|
作者
Viennot, David [1 ]
机构
[1] Univ Franche Comte, Observ Besancon, Inst UTINAM, CNRS,UMR 6213, F-25010 Besancon, France
关键词
D O I
10.1063/1.3496386
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that the holonomy of a connection defined on a principal composite bundle is related by a non-Abelian Stokes theorem to the composition of the holonomies associated with the connections of the component bundles of the composite. We apply this formalism to describe the non-Abelian geometric phase (when the geometric phase generator does not commute with the dynamical phase generator). We find then an assumption to obtain a new kind of separation between the dynamical and the geometric phases. We also apply this formalism to the gauge theory of gravity in the presence of a Dirac spinor field in order to decompose the holonomy of the Lorentz connection into holonomies of the linear connection and of the Cartan connection. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3496386]
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Quantization of non-Abelian gauge theory in graphene
    Shah, Naveed Ahmad
    Ahsan, M. A. H.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2021, 18 (03)
  • [32] Detecting non-Abelian geometric phases with superconducting nanocircuits
    Feng, Zhi-Bo
    Zhang, Yuan-Min
    Wang, Guo-Zhi
    Han, Hongpei
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2009, 41 (10): : 1859 - 1863
  • [33] Non-Abelian geometric phases in periodically driven systems
    Novicenko, Viktor
    Juzeliunas, Gediminas
    PHYSICAL REVIEW A, 2019, 100 (01)
  • [34] Non-Abelian basis tensor gauge theory
    Basso, Edward E.
    Chung, Daniel J. H.
    PHYSICAL REVIEW D, 2019, 100 (08)
  • [35] Evidence for non-trivial holonomy in semiclassical non-Abelian lattice gauge fields
    Müller-Preussker, M
    Quark Confinement and the Hadron Spectrum VI, 2005, 756 : 245 - 247
  • [36] The dual of non-Abelian Lattice Gauge Theory
    Pfeiffer, H
    Oeckl, R
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2002, 106 : 1010 - 1012
  • [37] Isotropization times in non-Abelian gauge theory
    Berges, J.
    Scheffler, S.
    Sexty, D.
    PROGRESS IN PARTICLE AND NUCLEAR PHYSICS, VOL 61, NO 1, 2008, 61 (01): : 86 - 88
  • [38] QUANTIZATION OF CURRENTS IN A NON-ABELIAN GAUGE THEORY
    MOONEY, J
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1976, 21 (01): : 100 - 100
  • [39] Abelian and non-Abelian geometric phases in adiabatic open quantum systems
    Sarandy, M. S.
    Lidar, D. A.
    PHYSICAL REVIEW A, 2006, 73 (06):
  • [40] A gauge-invariant object in non-Abelian gauge theory
    Chernodub, MN
    PHYSICS LETTERS B, 2006, 634 (2-3) : 255 - 261