Holonomy of a principal composite bundle connection, non-Abelian geometric phases, and gauge theory of gravity

被引:7
|
作者
Viennot, David [1 ]
机构
[1] Univ Franche Comte, Observ Besancon, Inst UTINAM, CNRS,UMR 6213, F-25010 Besancon, France
关键词
D O I
10.1063/1.3496386
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that the holonomy of a connection defined on a principal composite bundle is related by a non-Abelian Stokes theorem to the composition of the holonomies associated with the connections of the component bundles of the composite. We apply this formalism to describe the non-Abelian geometric phase (when the geometric phase generator does not commute with the dynamical phase generator). We find then an assumption to obtain a new kind of separation between the dynamical and the geometric phases. We also apply this formalism to the gauge theory of gravity in the presence of a Dirac spinor field in order to decompose the holonomy of the Lorentz connection into holonomies of the linear connection and of the Cartan connection. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3496386]
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Optimal design strategy for non-Abelian geometric phases using Abelian gauge fields based on quantum metric
    Kremer, Mark
    Teuber, Lucas
    Szameit, Alexander
    Scheel, Stefan
    PHYSICAL REVIEW RESEARCH, 2019, 1 (03):
  • [22] INFRARED PROBLEM IN NON-ABELIAN GAUGE THEORY
    YAO, YP
    PHYSICAL REVIEW LETTERS, 1976, 36 (12) : 653 - 656
  • [23] Topological features in non-Abelian gauge theory
    Malik, RP
    MODERN PHYSICS LETTERS A, 1999, 14 (28) : 1937 - 1949
  • [24] NON-ABELIAN GAUGE THEORY IN 2 DIMENSIONS
    FRISHMAN, Y
    NUCLEAR PHYSICS B, 1979, 148 (1-2) : 74 - 92
  • [25] Non-Abelian vortex in lattice gauge theory
    Yamamoto, Arata
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2018, 2018 (10):
  • [26] Gravitational corrections to a non-Abelian gauge theory
    Souza, Huan
    Bevilaqua, L. Ibiapina
    Lehum, A. C.
    PHYSICAL REVIEW D, 2022, 106 (04)
  • [27] Strings and branes in non-Abelian gauge theory
    Schmidhuber, C
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2000, 15 (31): : 4883 - 4902
  • [28] Electrodynamics as a non-Abelian gauge field theory
    Anon
    Journal of New Energy, 1999, 4 (03): : 97 - 106
  • [29] Quantization of non-Abelian gauge theory in graphene
    Shah, Naveed Ahmad
    Ahsan, M. A. H.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2021, 18 (03)
  • [30] RENORMALIZATION OF A NON-ABELIAN GAUGE-THEORY
    COTRINA, EM
    ACTA CIENTIFICA VENEZOLANA, 1978, 29 : 76 - 76