Validating markerless pose estimation with 3D X-ray radiography

被引:2
|
作者
Moore, Dalton D. [1 ]
Walker, Jeffrey D. [2 ]
MacLean, Jason N. [1 ,3 ,4 ]
Hatsopoulos, Nicholas G. [1 ,2 ,4 ]
机构
[1] Univ Chicago, Comm Computat Neurosci, Chicago, IL 60637 USA
[2] Univ Chicago, Dept Organismal Biol & Anat, Chicago, IL 60637 USA
[3] Univ Chicago, Dept Neurobiol, Chicago, IL 60637 USA
[4] Univ Chicago, Neurosci Inst, Chicago, IL 60637 USA
来源
JOURNAL OF EXPERIMENTAL BIOLOGY | 2022年 / 225卷 / 09期
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
DeepLabCut; Markerless tracking; Marmoset; Anipose; XROMM; Pose estimation;
D O I
10.1242/jeb.243998
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
To reveal the neurophysiological underpinnings of natural movement, neural recordings must be paired with accurate tracking of limbs and postures. Here, we evaluated the accuracy of DeepLabCut (DLC), a deep learning markerless motion capture approach, by comparing it with a 3D X-ray video radiography system that tracks markers placed under the skin (XROMM). We recorded behavioral data simultaneously with XROMM and RGB video as marmosets foraged and reconstructed 3D kinematics in a common coordinate system. We used the toolkit Anipose to filter and triangulate DLC trajectories of 11 markers on the forelimb and torso and found a low median error (0.228 cm) between the two modalities corresponding to 2.0% of the range of motion. For studies allowing this relatively small error, DLC and similar markerless pose estimation tools enable the study of increasingly naturalistic behaviors in many fields including non-human primate motor control.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Markerless 3D kinematics and force estimation in cheetahs
    da Silva, Zico
    Shield, Stacey
    Hudson, Penny E.
    Wilson, Alan M.
    Nicolls, Fred
    Patel, Amir
    [J]. SCIENTIFIC REPORTS, 2024, 14 (01):
  • [32] X-ray radiography
    Ooka, Norikazu
    Ishii, Toshimitsu
    [J]. Keikinzoku Yosetsu/Journal of Light Metal Welding and Construction, 1998, 36 (04):
  • [33] Robotic X-Ray Systems: Emerging Platform for Improved Radiography, 3D Imaging, and Interventional Radiology
    Reynolds, Tess
    Reynolds, T.
    Gang, G.
    Noo, F.
    Ritschl, L.
    [J]. MEDICAL PHYSICS, 2021, 48 (06)
  • [34] 3D Effective Atomic Number Estimation for X-Ray Security Inspection Systems
    Yalcin, Ozan
    [J]. ANOMALY DETECTION AND IMAGING WITH X-RAYS, ADIX IX, 2024, 13043
  • [35] X-RAY RADIOGRAPHY WITH X-RAY DIFFRACTION EQUIPMENT
    CLIFTON, HE
    [J]. JOURNAL OF SEDIMENTARY PETROLOGY, 1966, 36 (02): : 620 - &
  • [36] Markerless 3D Pose Estimation System for Mouse Musculoskeletal Model Using DeepLabCut and Multiple RGB-D Cameras
    Tsuruda, Yoshito
    Akita, Shingo
    Yamanaka, Kotomi
    Yamamoto, Masataka
    Sano, Yoshitake
    Furuichi, Teiichi
    Takemura, Hiroshi
    [J]. 2023 IEEE/SICE INTERNATIONAL SYMPOSIUM ON SYSTEM INTEGRATION, SII, 2023,
  • [37] 3D-printed coded apertures for x-ray backscatter radiography
    Munoz, Andre A. M.
    Vella, Anna
    Healy, Matthew J. F.
    Lane, David W.
    Jupp, Ian
    Lockley, David
    [J]. RADIATION DETECTORS IN MEDICINE, INDUSTRY, AND NATIONAL SECURITY XVIII, 2017, 10393
  • [38] Adapted human pose: monocular 3D human pose estimation with zero real 3D pose data
    Liu, Shuangjun
    Sehgal, Naveen
    Ostadabbas, Sarah
    [J]. APPLIED INTELLIGENCE, 2022, 52 (12) : 14491 - 14506
  • [39] X-ray lithography for 3D microfluidic applications
    Romanato, F
    Tormen, M
    Businaro, L
    Vaccari, L
    Stomeo, T
    Passaseo, A
    Di Fabrizio, E
    [J]. MICROELECTRONIC ENGINEERING, 2004, 73-4 : 870 - 875
  • [40] Estimation of location of defects in propellant grain by X-ray radiography
    Ghose, Bikash
    Kankane, D. K.
    [J]. NDT & E INTERNATIONAL, 2008, 41 (02) : 125 - 128