Validating markerless pose estimation with 3D X-ray radiography

被引:2
|
作者
Moore, Dalton D. [1 ]
Walker, Jeffrey D. [2 ]
MacLean, Jason N. [1 ,3 ,4 ]
Hatsopoulos, Nicholas G. [1 ,2 ,4 ]
机构
[1] Univ Chicago, Comm Computat Neurosci, Chicago, IL 60637 USA
[2] Univ Chicago, Dept Organismal Biol & Anat, Chicago, IL 60637 USA
[3] Univ Chicago, Dept Neurobiol, Chicago, IL 60637 USA
[4] Univ Chicago, Neurosci Inst, Chicago, IL 60637 USA
来源
JOURNAL OF EXPERIMENTAL BIOLOGY | 2022年 / 225卷 / 09期
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
DeepLabCut; Markerless tracking; Marmoset; Anipose; XROMM; Pose estimation;
D O I
10.1242/jeb.243998
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
To reveal the neurophysiological underpinnings of natural movement, neural recordings must be paired with accurate tracking of limbs and postures. Here, we evaluated the accuracy of DeepLabCut (DLC), a deep learning markerless motion capture approach, by comparing it with a 3D X-ray video radiography system that tracks markers placed under the skin (XROMM). We recorded behavioral data simultaneously with XROMM and RGB video as marmosets foraged and reconstructed 3D kinematics in a common coordinate system. We used the toolkit Anipose to filter and triangulate DLC trajectories of 11 markers on the forelimb and torso and found a low median error (0.228 cm) between the two modalities corresponding to 2.0% of the range of motion. For studies allowing this relatively small error, DLC and similar markerless pose estimation tools enable the study of increasingly naturalistic behaviors in many fields including non-human primate motor control.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Monocular 3D Human Pose Markerless Systems for Gait Assessment
    Zhu, Xuqi
    Boukhennoufa, Issam
    Liew, Bernard
    Gao, Cong
    Yu, Wangyang
    McDonald-Maier, Klaus D.
    Zhai, Xiaojun
    [J]. BIOENGINEERING-BASEL, 2023, 10 (06):
  • [22] 3D X-RAY IMAGE COMPOSITION
    Armeanu, Constantin Catalin
    [J]. UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2016, 78 (01): : 309 - 320
  • [23] Multiscale 3D X-ray imaging
    R. Joseph Kline
    [J]. Nature Electronics, 2019, 2 : 435 - 436
  • [24] X-ray holography: Atoms in 3D
    Tegze, M
    Faigel, G
    Bortel, G
    Marchesini, S
    Belakhovsky, M
    Simionovici, A
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2005, 401 (1-2) : 92 - 98
  • [25] 3D X-ray crystal microscope
    Ice, GE
    Larson, BC
    [J]. ADVANCED ENGINEERING MATERIALS, 2000, 2 (10) : 643 - 646
  • [26] X-ray holography: Atoms in 3D
    Tegze, M.
    Faigel, G.
    Bortel, G.
    Marchesini, S.
    Belakhovsky, M.
    Simionovici, A.
    [J]. Journal of Alloys and Compounds, 2005, 401 (1-2): : 92 - 98
  • [27] 3D discrete X-ray transform
    Averbuch, A
    Shkolnisky, Y
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2004, 17 (03) : 259 - 276
  • [28] Multiscale 3D X-ray imaging
    Kline, R. Joseph
    [J]. NATURE ELECTRONICS, 2019, 2 (10) : 435 - 436
  • [29] Stabilization of 3D pose estimation
    Neddermeyer, W
    Schnell, M
    Winkler, W
    Lilienthal, A
    [J]. APPLICATIONS OF GEOMETRIC ALGEBRA IN COMPUTER SCIENCE AND ENGINEERING, 2002, : 385 - 394
  • [30] Pose estimation of mobile-bearing total knee arthroplasty using X-ray fluoroscopic images and 3D knematic analysis
    Yamazaki, Takaharu
    Futai, Kazuma
    Tomita, Tetsuya
    Sato, Yoshinobu
    Yoshikawa, Hideki
    Tamura, Shinichi
    Sugamoto, Kazuomi
    [J]. Transactions of Japanese Society for Medical and Biological Engineering, 2011, 49 (05): : 703 - 711