Validating markerless pose estimation with 3D X-ray radiography

被引:2
|
作者
Moore, Dalton D. [1 ]
Walker, Jeffrey D. [2 ]
MacLean, Jason N. [1 ,3 ,4 ]
Hatsopoulos, Nicholas G. [1 ,2 ,4 ]
机构
[1] Univ Chicago, Comm Computat Neurosci, Chicago, IL 60637 USA
[2] Univ Chicago, Dept Organismal Biol & Anat, Chicago, IL 60637 USA
[3] Univ Chicago, Dept Neurobiol, Chicago, IL 60637 USA
[4] Univ Chicago, Neurosci Inst, Chicago, IL 60637 USA
来源
JOURNAL OF EXPERIMENTAL BIOLOGY | 2022年 / 225卷 / 09期
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
DeepLabCut; Markerless tracking; Marmoset; Anipose; XROMM; Pose estimation;
D O I
10.1242/jeb.243998
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
To reveal the neurophysiological underpinnings of natural movement, neural recordings must be paired with accurate tracking of limbs and postures. Here, we evaluated the accuracy of DeepLabCut (DLC), a deep learning markerless motion capture approach, by comparing it with a 3D X-ray video radiography system that tracks markers placed under the skin (XROMM). We recorded behavioral data simultaneously with XROMM and RGB video as marmosets foraged and reconstructed 3D kinematics in a common coordinate system. We used the toolkit Anipose to filter and triangulate DLC trajectories of 11 markers on the forelimb and torso and found a low median error (0.228 cm) between the two modalities corresponding to 2.0% of the range of motion. For studies allowing this relatively small error, DLC and similar markerless pose estimation tools enable the study of increasingly naturalistic behaviors in many fields including non-human primate motor control.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Adapted human pose: monocular 3D human pose estimation with zero real 3D pose data
    Shuangjun Liu
    Naveen Sehgal
    Sarah Ostadabbas
    [J]. Applied Intelligence, 2022, 52 : 14491 - 14506
  • [42] A FACTORIZATION METHOD FOR THE 3D X-RAY TRANSFORM
    DEFRISE, M
    [J]. INVERSE PROBLEMS, 1995, 11 (05) : 983 - 994
  • [43] Calibration of X-ray projections in 3D reconstruction
    Wang, P
    Mou, XQ
    Qin, ZY
    Cai, YL
    [J]. VISUALIZATION AND OPTIMIZATION TECHNIQUES, 2001, 4553 : 44 - 49
  • [44] 3D Stereo Algorithm for X-ray Units
    Miroshnychenko, S., I
    Volkov, E. V.
    [J]. 2014 IEEE 34TH INTERNATIONAL CONFERENCE ON ELECTRONICS AND NANOTECHNOLOGY (ELNANO), 2014, : 316 - 318
  • [45] MICROFOCUS X-RAY SOURCES FOR 3D MICROTOMOGRAPHY
    FLYNN, MJ
    HAMES, SM
    REIMANN, DA
    WILDERMAN, SJ
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1994, 353 (1-3): : 312 - 315
  • [46] Factorization method for the 3D X-ray transform
    Defrise, M.
    [J]. Inverse Problems, 1995, 11 (05):
  • [47] Quantification for 3D micro X-ray fluorescence
    Mantouvalou, Ioanna
    Malzer, Wolfgang
    Kanngiesser, Birgit
    [J]. SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2012, 77 : 9 - 18
  • [48] 3D Human Pose Estimation=2D Pose Estimation plus Matching
    Chen, Ching-Hang
    Ramanan, Deva
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 5759 - 5767
  • [49] Shape, Pose and Density Statistical Model for 3D Reconstruction of Articulated Structures from X-Ray Images
    Fotsin, Ted Julien Tchinde
    Vazquez, Carlos
    Cresson, Thierry
    De Guise, Jacques
    [J]. 2019 41ST ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2019, : 2748 - 2751
  • [50] X-ray imaging of laser produced plasmas by a compound 3D x-ray lens
    Garanin, R. V.
    Pavlov, G. A.
    Suslov, N. A.
    Treushnikov, V. M.
    Treushnikov, V. V.
    Zhidkov, N. V.
    [J]. JOURNAL OF INSTRUMENTATION, 2015, 10