Feature Extraction From Images Using Integrated Photonic Convolutional Kernel

被引:3
|
作者
Huang, Yulong [1 ,2 ]
Huang, Beiju [3 ,4 ,5 ]
Cheng, Chuantong [1 ,2 ]
Zhang, Huan [1 ,2 ]
Zhang, Hengjie [1 ,2 ]
Chen, Run [1 ,2 ]
Chen, Hongda [3 ,4 ,5 ]
机构
[1] Chinese Acad Sci ISCAS, Inst Semicond, State Key Lab Integrated Optoelect, Beijing 100083, Peoples R China
[2] Univ Chinese Acad Sci UCAS, Coll Mat Sci & Optoelect Technol, Beijing 100049, Peoples R China
[3] ISCAS, State Key Lab Integrated Optoelect, Beijing 100083, Peoples R China
[4] UCAS, Coll Mat Sci & Optoelect Technol, Beijing 100049, Peoples R China
[5] Beijing Key Lab Inorgan Stretchable & Flexible In, Beijing 100083, Peoples R China
来源
IEEE PHOTONICS JOURNAL | 2022年 / 14卷 / 03期
基金
国家重点研发计划;
关键词
Convolution; Kernel; Optical imaging; Feature extraction; Optical computing; Computer architecture; Optical ring resonators; Integrated photonics; micro-ring resonator; convolution neural network; NEURAL-NETWORKS; DESIGN;
D O I
10.1109/JPHOT.2022.3163793
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Optical neural networks are expected to solve the problems of computational efficiency and energy consumption in neural networks. Herein, we experimentally implemented a 2 x 2 photonic convolutional kernel (PCK) using four on-chip micro-ring resonators (MRRs) and demonstrated feature extraction for images with different convolutional kernels. We trained a simple convolutional neural network model to recognize the MNIST dataset and used our PCK devices for processing in the first convolutional layer, achieving a recognition rate of 91%, which further verified the feasibility of MRRs for convolution operations. In addition to the source, all silicon photonic devices used can be monolithically integrated and feature good scalability, which is important for realizing large-scale, low-cost optical neural networks.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Feature Extraction and Segmentation Processing of Images Based on Convolutional Neural Networks
    Nan, Shuping
    OPTICAL MEMORY AND NEURAL NETWORKS, 2021, 30 (01) : 67 - 73
  • [22] Feature extraction from remote sensing data using kernel orthonormalized PLS
    Arenas-Garcia, Jeronimo
    Camps-Valls, Gustavo
    IGARSS: 2007 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-12: SENSING AND UNDERSTANDING OUR PLANET, 2007, : 258A - +
  • [23] Feature Extraction from Covariance by Using Kernel Method for Classifying Polysomnographys Data
    Hong Quy Nguyen
    Yang, Hyung-Jeong
    Thao Nguyen Thieu
    ACM IMCOM 2015, Proceedings, 2015,
  • [24] Reformative nonlinear feature extraction using kernel MSE
    Zhu, Qi
    NEUROCOMPUTING, 2010, 73 (16-18) : 3334 - 3337
  • [25] LVS Check for Photonic Integrated Circuits - Curvilinear Feature Extraction and Validation
    Cao, Ruping
    Billoudet, Julien
    Ferguson, John
    Couder, Lionel
    Cayo, John
    Arriordaz, Alexandre
    O'Connor, Ian
    2015 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE), 2015, : 1253 - 1256
  • [26] Feature extraction from hyperspectral images using learned edge structures
    Zhang, Ying
    Kang, Xudong
    Li, Shutao
    Puhong Duan
    Benediktsson, Jon Atli
    REMOTE SENSING LETTERS, 2019, 10 (03) : 244 - 253
  • [27] Feature extraction from photographical images using a hybrid neural network
    Becanovic, V
    Kermit, M
    Eide, ÅJ
    NINTH WORKSHOP ON VIRTUAL INTELLIGENCE/DYNAMIC NEURAL NETWORKS: ACADEMIC/INDUSTRIAL/NASA/DEFENSE TECHNICAL INTERCHANGE AND TUTORIALS, 1999, 3728 : 351 - 361
  • [28] Feature extraction from mammographic images using fast marching methods
    Bottigli, U
    Golosio, B
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2002, 487 (1-2): : 209 - 215
  • [29] On feature extraction for noninvasive kernel estimation of left ventricular chamber function indices from echocardiographic images
    Santiago-Mozos, Ricardo
    Luis Rojo-Alvarez, Jose
    Carlos Antoranz, J.
    Desco, Mar
    Rodriguez-Perez, Daniel
    Yotti, Raquel
    Bermejo, Javier
    DIGITAL SIGNAL PROCESSING, 2015, 39 : 63 - 79
  • [30] GPU-Based Parallel Kernel PCA Feature Extraction for Hyperspectral Images
    Luo, Renbo
    Pi, Youguo
    INTERNATIONAL CONFERENCE ON REMOTE SENSING AND WIRELESS COMMUNICATIONS (RSWC 2014), 2014, : 140 - 145