Feature Extraction From Images Using Integrated Photonic Convolutional Kernel

被引:3
|
作者
Huang, Yulong [1 ,2 ]
Huang, Beiju [3 ,4 ,5 ]
Cheng, Chuantong [1 ,2 ]
Zhang, Huan [1 ,2 ]
Zhang, Hengjie [1 ,2 ]
Chen, Run [1 ,2 ]
Chen, Hongda [3 ,4 ,5 ]
机构
[1] Chinese Acad Sci ISCAS, Inst Semicond, State Key Lab Integrated Optoelect, Beijing 100083, Peoples R China
[2] Univ Chinese Acad Sci UCAS, Coll Mat Sci & Optoelect Technol, Beijing 100049, Peoples R China
[3] ISCAS, State Key Lab Integrated Optoelect, Beijing 100083, Peoples R China
[4] UCAS, Coll Mat Sci & Optoelect Technol, Beijing 100049, Peoples R China
[5] Beijing Key Lab Inorgan Stretchable & Flexible In, Beijing 100083, Peoples R China
来源
IEEE PHOTONICS JOURNAL | 2022年 / 14卷 / 03期
基金
国家重点研发计划;
关键词
Convolution; Kernel; Optical imaging; Feature extraction; Optical computing; Computer architecture; Optical ring resonators; Integrated photonics; micro-ring resonator; convolution neural network; NEURAL-NETWORKS; DESIGN;
D O I
10.1109/JPHOT.2022.3163793
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Optical neural networks are expected to solve the problems of computational efficiency and energy consumption in neural networks. Herein, we experimentally implemented a 2 x 2 photonic convolutional kernel (PCK) using four on-chip micro-ring resonators (MRRs) and demonstrated feature extraction for images with different convolutional kernels. We trained a simple convolutional neural network model to recognize the MNIST dataset and used our PCK devices for processing in the first convolutional layer, achieving a recognition rate of 91%, which further verified the feasibility of MRRs for convolution operations. In addition to the source, all silicon photonic devices used can be monolithically integrated and feature good scalability, which is important for realizing large-scale, low-cost optical neural networks.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Parallel convolutional processing using an integrated photonic tensor core
    J. Feldmann
    N. Youngblood
    M. Karpov
    H. Gehring
    X. Li
    M. Stappers
    M. Le Gallo
    X. Fu
    A. Lukashchuk
    A. S. Raja
    J. Liu
    C. D. Wright
    A. Sebastian
    T. J. Kippenberg
    W. H. P. Pernice
    H. Bhaskaran
    Nature, 2021, 589 : 52 - 58
  • [42] Feature extraction using kernel Laplacian maximum margin criterion
    Sun, Zhongxi
    Sun, Changyin
    Yang, Wankou
    Wang, Zhenyu
    OPTICAL ENGINEERING, 2012, 51 (06)
  • [43] The feature extraction of human face using Kernel Fisher Discriminant
    Chang, Qiuxiang
    2007 International Symposium on Computer Science & Technology, Proceedings, 2007, : 21 - 23
  • [44] Better feature extraction using multi-encoder convolutional neural networks for optic cup segmentation from digital fundus images
    Sharma A.
    Agrawal M.
    Dutta Roy S.
    Gupta V.
    Research on Biomedical Engineering, 2023, 39 (01) : 51 - 63
  • [45] Hyperspectral Remote Sensing Images Deep Feature Extraction Based on Mixed Feature and Convolutional Neural Networks
    Liu, Jing
    Yang, Zhe
    Liu, Yi
    Mu, Caihong
    REMOTE SENSING, 2021, 13 (13)
  • [46] Fault Diagnosis in Induction Motors through Infrared Thermal Images Using Convolutional Neural Network Feature Extraction
    Calderon-Uribe, Uriel
    Lizarraga-Morales, Rocio A.
    Guryev, Igor V.
    MACHINES, 2024, 12 (08)
  • [47] Lung Nodule Classification on CT Images Using Deep Convolutional Neural Network Based on Geometric Feature Extraction
    Venkatesan, Nikitha Johnsirani
    Nam, ChoonSung
    Shin, Dong Ryeol
    JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2020, 10 (09) : 2042 - 2052
  • [48] Detection of AI-Created Images Using Pixel-Wise Feature Extraction and Convolutional Neural Networks
    Martin-Rodriguez, Fernando
    Garcia-Mojon, Rocio
    Fernandez-Barciela, Monica
    SENSORS, 2023, 23 (22)
  • [49] Feature Extraction using Partitioning of Feature Space for Hyperspectral Images Classification
    Imani, Maryam
    Ghassemian, Hassan
    2014 IRANIAN CONFERENCE ON INTELLIGENT SYSTEMS (ICIS), 2014,
  • [50] Feature extraction from satellite images of hilly terrains using wavelets and watersheds
    Parvathi, K.
    Rao, B. S. Prakasa
    Rao, T. Venkateswara
    Reddy, K. Mruthyunjaya
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2010, 31 (22) : 5855 - 5866