Feature Extraction From Images Using Integrated Photonic Convolutional Kernel

被引:3
|
作者
Huang, Yulong [1 ,2 ]
Huang, Beiju [3 ,4 ,5 ]
Cheng, Chuantong [1 ,2 ]
Zhang, Huan [1 ,2 ]
Zhang, Hengjie [1 ,2 ]
Chen, Run [1 ,2 ]
Chen, Hongda [3 ,4 ,5 ]
机构
[1] Chinese Acad Sci ISCAS, Inst Semicond, State Key Lab Integrated Optoelect, Beijing 100083, Peoples R China
[2] Univ Chinese Acad Sci UCAS, Coll Mat Sci & Optoelect Technol, Beijing 100049, Peoples R China
[3] ISCAS, State Key Lab Integrated Optoelect, Beijing 100083, Peoples R China
[4] UCAS, Coll Mat Sci & Optoelect Technol, Beijing 100049, Peoples R China
[5] Beijing Key Lab Inorgan Stretchable & Flexible In, Beijing 100083, Peoples R China
来源
IEEE PHOTONICS JOURNAL | 2022年 / 14卷 / 03期
基金
国家重点研发计划;
关键词
Convolution; Kernel; Optical imaging; Feature extraction; Optical computing; Computer architecture; Optical ring resonators; Integrated photonics; micro-ring resonator; convolution neural network; NEURAL-NETWORKS; DESIGN;
D O I
10.1109/JPHOT.2022.3163793
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Optical neural networks are expected to solve the problems of computational efficiency and energy consumption in neural networks. Herein, we experimentally implemented a 2 x 2 photonic convolutional kernel (PCK) using four on-chip micro-ring resonators (MRRs) and demonstrated feature extraction for images with different convolutional kernels. We trained a simple convolutional neural network model to recognize the MNIST dataset and used our PCK devices for processing in the first convolutional layer, achieving a recognition rate of 91%, which further verified the feasibility of MRRs for convolution operations. In addition to the source, all silicon photonic devices used can be monolithically integrated and feature good scalability, which is important for realizing large-scale, low-cost optical neural networks.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Feature extraction and classification of VHR images with attribute profiles and convolutional neural networks
    Tian Tian
    Lang Gao
    Weijing Song
    Kim-Kwang Raymond Choo
    Jijun He
    Multimedia Tools and Applications, 2018, 77 : 18637 - 18656
  • [32] Feature Extraction and Grain Segmentation of Sandstone Images Based on Convolutional Neural Networks
    Jiang, Feng
    Gu, Qing
    Hao, Huizhen
    Li, Na
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 2636 - 2641
  • [33] Smart feature extraction and classification of hyperspectral images based on convolutional neural networks
    Hamouda, Maissa
    Ettabaa, Karim Saheb
    Bouhlel, Med Salim
    IET IMAGE PROCESSING, 2020, 14 (10) : 1999 - 2005
  • [34] Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks
    Chen, Yushi
    Jiang, Hanlu
    Li, Chunyang
    Jia, Xiuping
    Ghamisi, Pedram
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (10): : 6232 - 6251
  • [35] Feature extraction and classification of VHR images with attribute profiles and convolutional neural networks
    Tian, Tian
    Gao, Lang
    Song, Weijing
    Choo, Kim-Kwang Raymond
    He, Jijun
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (14) : 18637 - 18656
  • [36] JOINT FEATURE EXTRACTION FOR MULTISPECTRAL AND PANCHROMATIC IMAGES BASED ON CONVOLUTIONAL NEURAL NETWORK
    Chen, Yi
    Zhang, Mengmeng
    Li, Wei
    Du, Qian
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 5005 - 5008
  • [37] MINUTIAE FEATURE EXTRACTION FROM FINGERPRINT IMAGES
    Vaikole, Shubhangi
    Sawarkar, S. D.
    Hivrale, Shila
    Sharma, Taruna
    2009 IEEE INTERNATIONAL ADVANCE COMPUTING CONFERENCE, VOLS 1-3, 2009, : 691 - +
  • [38] Parallel convolutional processing using an integrated photonic tensor core
    Feldmann, J.
    Youngblood, N.
    Karpov, M.
    Gehring, H.
    Li, X.
    Stappers, M.
    Le Gallo, M.
    Fu, X.
    Lukashchuk, A.
    Raja, A. S.
    Liu, J.
    Wright, C. D.
    Sebastian, A.
    Kippenberg, T. J.
    Pernice, W. H. P.
    Bhaskaran, H.
    NATURE, 2021, 589 (7840) : 52 - +
  • [39] Direct feature extraction from compressed images
    Shen, B
    Sethi, IK
    STORAGE AND RETRIEVAL FOR STILL IMAGE AND VIDEO DATABASES IV, 1996, 2670 : 404 - 414
  • [40] Photonic Convolutional Neural Networks Using Integrated Diffractive Optics
    Ong, Jun Rong
    Ooi, Chin Chun
    Ang, Thomas Y. L.
    Lim, Soon Thor
    Png, Ching Eng
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2020, 26 (05)