GPU-Based Parallel Kernel PCA Feature Extraction for Hyperspectral Images

被引:0
|
作者
Luo, Renbo [1 ]
Pi, Youguo [1 ]
机构
[1] S China Univ Technol, Guangzhou, Guangdong, Peoples R China
关键词
COMPONENT ANALYSIS; CLASSIFICATION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The KPCA algorithm is widely used for feature extraction of hyperspectral images. One of the disadvantages of KPCA is that its sequential implementations have long run time due to their relatively large computational complexity. In this paper, a GPU implementation of the KPCA algorithm for extracting features of hyperspectural images is presented. Experiments are conducted using a hyperspectral data set, the results reveal the GPU based parallel KPCA approach has the potential to improve computation speed, and the speedup increases when the size of the input data set increases, with no loss in accuracy.
引用
收藏
页码:140 / 145
页数:6
相关论文
共 50 条
  • [1] A FAST ITERATIVE KERNEL PCA FEATURE EXTRACTION FOR HYPERSPECTRAL IMAGES
    Liao, Wenzhi
    Pizurica, Aleksandra
    Philips, Wilfried
    Pi, Youguo
    [J]. 2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2010, : 1317 - 1320
  • [2] GPU Parallel Implementation for Real-Time Feature Extraction of Hyperspectral Images
    Li, Chunchao
    Peng, Yuanxi
    Su, Mingrui
    Jiang, Tian
    [J]. APPLIED SCIENCES-BASEL, 2020, 10 (19): : 1 - 22
  • [3] Bilateral Kernel Extraction from PCA for Classification of Hyperspectral Images
    Subudhi, Subhashree
    Patro, Ramnarayan
    Biswal, Pradyut Kumar
    [J]. PFG-JOURNAL OF PHOTOGRAMMETRY REMOTE SENSING AND GEOINFORMATION SCIENCE, 2019, 87 (04): : 205 - 221
  • [4] Bilateral Kernel Extraction from PCA for Classification of Hyperspectral Images
    Subhashree Subudhi
    Ramnarayan Patro
    Pradyut Kumar Biswal
    [J]. PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 2019, 87 : 205 - 221
  • [5] The GPU-based parallel implementation of phase information extraction of multi-view images
    Zhang, Jutao
    Yan, Jianfeng
    Gong, Shengrong
    Pu, Donglin
    [J]. MATERIALS PROCESSING TECHNOLOGY, PTS 1-4, 2011, 291-294 : 3391 - +
  • [6] A GPU-Based Processing Chain for Linearly Unmixing Hyperspectral Images
    Martel, Ernestina
    Guerra, Raul
    Lopez, Sebastian
    Sarmiento, Roberto
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (03) : 818 - 834
  • [7] GPU parallel implementation of improved noise adaptive principal component algorithm for feature extraction of hyperspectral images
    Li, ChunChao
    Wu, Luting
    Peng, Yuanxi
    Liu, Yu
    Xu, Yunpeng
    [J]. AOPC 2020: DISPLAY TECHNOLOGY; PHOTONIC MEMS, THZ MEMS, AND METAMATERIALS; AND AI IN OPTICS AND PHOTONICS, 2020, 11565
  • [8] Hyperspectral Images Classification based on Inception Network and Kernel PCA
    Ruiz, D.
    Bacca, B.
    Caicedo, E.
    [J]. IEEE LATIN AMERICA TRANSACTIONS, 2019, 17 (12) : 1995 - 2004
  • [9] Hyperspectral feature recognition based on kernel PCA and relational perspective map
    Su, Hongjun
    Sheng, Yehua
    [J]. CHINESE OPTICS LETTERS, 2010, 8 (08) : 811 - 814
  • [10] Hyperspectral feature recognition based on kernel PCA and relational perspective map
    苏红军
    盛业华
    [J]. Chinese Optics Letters, 2010, 8 (08) : 811 - 814