A FAST ITERATIVE KERNEL PCA FEATURE EXTRACTION FOR HYPERSPECTRAL IMAGES

被引:15
|
作者
Liao, Wenzhi [1 ,2 ]
Pizurica, Aleksandra [1 ]
Philips, Wilfried [1 ]
Pi, Youguo [2 ]
机构
[1] Univ Ghent, TELIN IPI IBBT, Sint Pietersnieuwstr 41, B-9000 Ghent, Belgium
[2] South China Univ Technol, Sch Automat, Guangzhou 510640, Peoples R China
关键词
Feature extraction; hyperspectral images; incremental principal component analysis; kernel vesion; COMPONENT ANALYSIS;
D O I
10.1109/ICIP.2010.5651670
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A fast iterative Kernel Principal Component Analysis (KPCA) is proposed to extract features from hyperspectral images. The proposed method is a kernel version of the Candid Covariance-Free Incremental Principal Component Analysis, which solves the eigenvectors through iteration. Without performing eigen decomposition on Gram matrix, our method can reduce the space complexity and time complexity greatly. Experimental results were validated in comparison with the standard KPCA and linear version methods.
引用
收藏
页码:1317 / 1320
页数:4
相关论文
共 50 条
  • [1] GPU-Based Parallel Kernel PCA Feature Extraction for Hyperspectral Images
    Luo, Renbo
    Pi, Youguo
    [J]. INTERNATIONAL CONFERENCE ON REMOTE SENSING AND WIRELESS COMMUNICATIONS (RSWC 2014), 2014, : 140 - 145
  • [2] Bilateral Kernel Extraction from PCA for Classification of Hyperspectral Images
    Subudhi, Subhashree
    Patro, Ramnarayan
    Biswal, Pradyut Kumar
    [J]. PFG-JOURNAL OF PHOTOGRAMMETRY REMOTE SENSING AND GEOINFORMATION SCIENCE, 2019, 87 (04): : 205 - 221
  • [3] Bilateral Kernel Extraction from PCA for Classification of Hyperspectral Images
    Subhashree Subudhi
    Ramnarayan Patro
    Pradyut Kumar Biswal
    [J]. PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 2019, 87 : 205 - 221
  • [4] Robust feature extraction using kernel PCA
    Takiguchi, Tetsuya
    Ariki, Yasuo
    [J]. 2006 IEEE International Conference on Acoustics, Speech and Signal Processing, Vols 1-13, 2006, : 509 - 512
  • [5] Kernel PCA for feature extraction with information complexity
    Liu, ZQ
    Bozdogan, H
    [J]. STATISTICAL DATA MINING AND KNOWLEDGE DISCOVERY, 2004, : 309 - 322
  • [6] Feature extraction and denoising using kernel PCA
    Jade, AM
    Srikanth, B
    Jayaraman, VK
    Kulkarni, BD
    Jog, JP
    Priya, L
    [J]. CHEMICAL ENGINEERING SCIENCE, 2003, 58 (19) : 4441 - 4448
  • [7] Hyperspectral Images Classification based on Inception Network and Kernel PCA
    Ruiz, D.
    Bacca, B.
    Caicedo, E.
    [J]. IEEE LATIN AMERICA TRANSACTIONS, 2019, 17 (12) : 1995 - 2004
  • [8] A fast algorithm for feature extraction of hyperspectral images using the first order statistics
    Hamid Reza Shahdoosti
    Nayereh Javaheri
    [J]. Multimedia Tools and Applications, 2018, 77 : 23633 - 23650
  • [9] A fast algorithm for feature extraction of hyperspectral images using the first order statistics
    Shandoosti, Hamid Reza
    Javaheri, Nayereh
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (18) : 23633 - 23650
  • [10] A fast feature extraction method based on integer wavelet transform for hyperspectral images
    Gu, YF
    Zhang, Y
    Yu, SS
    [J]. CHINESE JOURNAL OF ELECTRONICS, 2004, 13 (03) : 496 - 500