Hyperspectral feature recognition based on kernel PCA and relational perspective map

被引:0
|
作者
苏红军 [1 ]
盛业华 [1 ]
机构
[1] Key Laboratory of Virtual Geographic Environment(Ministry of Education),Nanjing Normal University
基金
中国国家自然科学基金;
关键词
KPCA; Hyperspectral feature recognition based on kernel PCA and relational perspective map;
D O I
暂无
中图分类号
P237 [测绘遥感技术];
学科分类号
1404 ;
摘要
A novel joint kernel principal component analysis(PCA) and relational perspective map(RPM) method called KPmapper is proposed for hyperspectral dimensionality reduction and spectral feature recognition. Kernel PCA is used to analyze hyperspectral data so that the major information corresponding to features can be better extracted.RPM is used to visualize hyperspectral data through two-dimensional(2D) maps, and it is an efficient approach to discover regularities and extract information by partitioning the data into pieces and mapping them onto a 2D space.The experimental results prove that the KPmapper algorithm can effectively obtain the intrinsic features in nonlinear high dimensional data.It is useful and impressing for dimensionality reduction and spectral feature recognition.
引用
收藏
页码:811 / 814
页数:4
相关论文
共 50 条
  • [1] Hyperspectral feature recognition based on kernel PCA and relational perspective map
    Su, Hongjun
    Sheng, Yehua
    [J]. CHINESE OPTICS LETTERS, 2010, 8 (08) : 811 - 814
  • [2] GPU-Based Parallel Kernel PCA Feature Extraction for Hyperspectral Images
    Luo, Renbo
    Pi, Youguo
    [J]. INTERNATIONAL CONFERENCE ON REMOTE SENSING AND WIRELESS COMMUNICATIONS (RSWC 2014), 2014, : 140 - 145
  • [3] A FAST ITERATIVE KERNEL PCA FEATURE EXTRACTION FOR HYPERSPECTRAL IMAGES
    Liao, Wenzhi
    Pizurica, Aleksandra
    Philips, Wilfried
    Pi, Youguo
    [J]. 2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2010, : 1317 - 1320
  • [4] On the use of kernel PCA for feature extraction in speech recognition
    Lima, A
    Zen, H
    Nankaku, Y
    Miyajima, C
    Tokuda, K
    Kitamura, T
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2004, E87D (12) : 2802 - 2811
  • [5] Hyperspectral Images Classification based on Inception Network and Kernel PCA
    Ruiz, D.
    Bacca, B.
    Caicedo, E.
    [J]. IEEE LATIN AMERICA TRANSACTIONS, 2019, 17 (12) : 1995 - 2004
  • [6] Gabor-based kernel PCA for palmprint recognition
    Ekinci, M.
    Aykut, M.
    [J]. ELECTRONICS LETTERS, 2007, 43 (20) : 1077 - 1079
  • [7] Palmprint recognition using wavelet based kernel PCA
    Aykut, Murat
    Ekinci, Murat
    [J]. 2007 IEEE 15TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS, VOLS 1-3, 2007, : 560 - 563
  • [8] Optimization of nonlinear Kernel PCA feature extraction algorithms for automatic target recognition
    Winger, Seth
    Lu, Thomas
    Chao, Tien-Hsin
    [J]. OPTICAL PATTERN RECOGNITION XXII, 2011, 8055
  • [9] Identification of maize kernel embryo based on hyperspectral imaging technology and PCA
    Huang, Wenqian
    Li, Jiangbo
    Zhang, Chi
    Zhang, Baohua
    Zhang, Baihai
    [J]. Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2012, 28 (SUPPL. 2): : 243 - 247
  • [10] Feature reduction method based on wavelet kernel-PCA
    Guo, Lei
    Chen, Jin
    Zhu, Yi
    Zhao, Fa-Gang
    [J]. Zhendong Gongcheng Xuebao/Journal of Vibration Engineering, 2009, 22 (03): : 287 - 291