Optimization of nonlinear Kernel PCA feature extraction algorithms for automatic target recognition

被引:0
|
作者
Winger, Seth [1 ]
Lu, Thomas [2 ]
Chao, Tien-Hsin [2 ]
机构
[1] Stanford Univ, Palo Alto, CA 94304 USA
[2] NASA, Jet Prop Lab, Pasadena, CA USA
来源
基金
美国国家航空航天局;
关键词
Automatic target recognition; feature extraction; principal component analysis; kernel PCA;
D O I
10.1117/12.886148
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a multi-stage automatic target recognition (ATR) system using a kernel-based PCA (kPCA) for nonlinear feature extraction. The kPCA method uses a nonlinear kernel function to map data onto a higher dimensional space and then performs the PCA in the feature space. An algorithm for inserting kernel PCA into the existing ATR system was designed and various types of kernels were tested and optimized on several testing image sets such as video images of boats in choppy waves or approaching helicopters. We discuss the performance comparisons and trade-offs in using kPCA for ATR operations. kPCA generally outperforms normal PCA in classification accuracy and free-response receiver operating characteristics (FROC).
引用
收藏
页数:11
相关论文
共 50 条
  • [1] On the use of kernel PCA for feature extraction in speech recognition
    Lima, A
    Zen, H
    Nankaku, Y
    Miyajima, C
    Tokuda, K
    Kitamura, T
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2004, E87D (12) : 2802 - 2811
  • [2] Kernel PCA for Feature Extraction and De-Noising in Nonlinear Regression
    Roman Rosipal
    Mark Girolami
    Leonard J. Trejo
    Andrzej Cichocki
    [J]. Neural Computing & Applications, 2001, 10 : 231 - 243
  • [3] Kernel PCA for feature extraction and de-noising in nonlinear regression
    Rosipal, R
    Girolami, M
    Trejo, LJ
    Cichocki, A
    [J]. NEURAL COMPUTING & APPLICATIONS, 2001, 10 (03): : 231 - 243
  • [4] Contourlet Detection and Feature Extraction for Automatic Target Recognition
    Wilbur, JoEllen
    McDonald, Robert J.
    Stack, Jason
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC 2009), VOLS 1-9, 2009, : 2734 - +
  • [5] Nonlinear Feature Extraction Based on Kernel Adaptive Marginal Fisher Analysis for Target HRRP Recognition
    Xu Xingjian
    Chen Kun
    Ban Tian
    Li Yuehua
    [J]. PROCEEDINGS OF 2018 14TH IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP), 2018, : 827 - 832
  • [6] Robust feature extraction using kernel PCA
    Takiguchi, Tetsuya
    Ariki, Yasuo
    [J]. 2006 IEEE International Conference on Acoustics, Speech and Signal Processing, Vols 1-13, 2006, : 509 - 512
  • [7] Feature extraction and denoising using kernel PCA
    Jade, AM
    Srikanth, B
    Jayaraman, VK
    Kulkarni, BD
    Jog, JP
    Priya, L
    [J]. CHEMICAL ENGINEERING SCIENCE, 2003, 58 (19) : 4441 - 4448
  • [8] Kernel PCA for feature extraction with information complexity
    Liu, ZQ
    Bozdogan, H
    [J]. STATISTICAL DATA MINING AND KNOWLEDGE DISCOVERY, 2004, : 309 - 322
  • [9] Feature Extraction For Palmprint Recognition Using Kernel-PCA With Modification in Gabor Parameters
    Kusban, Muhammad
    Susanto, Adhi
    Wahyunggoro, Oyas
    [J]. 2016 1ST INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING (IBIOMED): EMPOWERING BIOMEDICAL TECHNOLOGY FOR BETTER FUTURE, 2016, : 57 - 62
  • [10] Kernel self-optimization learning for kernel-based feature extraction and recognition
    Li, Jun-Bao
    Wang, Yun-Heng
    Chu, Shu-Chuan
    Roddick, John F.
    [J]. INFORMATION SCIENCES, 2014, 257 : 70 - 80