Kernel PCA for feature extraction and de-noising in nonlinear regression

被引:174
|
作者
Rosipal, R
Girolami, M
Trejo, LJ
Cichocki, A
机构
[1] NASA, Ames Res Ctr, Computat Sci Div, Moffett Field, CA 94035 USA
[2] Univ Paisley, Appl Computat Intelligence Res Unit, Sch Informat & Commun Technol, Paisley PA1 2BE, Renfrew, Scotland
[3] RIKEN, Lab Adv Brain Signal Proc, Brain Sci Inst, Wako, Saitama 35101, Japan
[4] Warsaw Univ Technol, Warsaw, Poland
来源
NEURAL COMPUTING & APPLICATIONS | 2001年 / 10卷 / 03期
关键词
de-noising; feature extraction; human performance monitoring; kernel functions; nonlinear regression; principal components;
D O I
10.1007/s521-001-8051-z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose the application of the Kernel Principal Component Analysis (PCA) technique for feature selection in a. high-dimensional feature space, where input variables are mapped by a Gaussian kernel. The extracted features are employed in the regression problems of chaotic Mackey-Glass time-series prediction in a noisy environment and estimating human signal detection performance from brain event-related potentials elicited by task relevant signals. We compared results obtained using either Kernel PCA or linear PCA as data preprocessing steps. On the human signal detection task, we report the superiority of Kernel PCA feature extraction over linear PCA. Similar to linear PCA, we demonstrate de-noising of the original data by the appropriate selection of various nonlinear principal components. The theoretical relation and experimental comparison of Kernel Principal Components Regression, Kernel Ridge Regression and epsilon-insensitive Support Vector Regression is also provided.
引用
收藏
页码:231 / 243
页数:13
相关论文
共 50 条
  • [1] Kernel PCA for Feature Extraction and De-Noising in Nonlinear Regression
    Roman Rosipal
    Mark Girolami
    Leonard J. Trejo
    Andrzej Cichocki
    [J]. Neural Computing & Applications, 2001, 10 : 231 - 243
  • [2] Kernel PCA and de-noising in feature spaces
    Mika, S
    Schölkopf, B
    Smola, A
    Müller, KR
    Scholz, M
    Rätsch, G
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 11, 1999, 11 : 536 - 542
  • [3] Robust de-noising by kernel PCA
    Takahashi, T
    Kurita, T
    [J]. ARTIFICIAL NEURAL NETWORKS - ICANN 2002, 2002, 2415 : 739 - 744
  • [4] INPUT SPACE REGULARIZATION STABILIZES PRE-IMAGES FOR KERNEL PCA DE-NOISING
    Abrahamsen, Trine Julie
    Hansen, Lars Kai
    [J]. 2009 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, 2009, : 204 - 209
  • [5] Research of the Raman Signal De-Noising Method Based on Feature Extraction
    Fan Xian-guang
    Wang Xiu-fen
    Wang Xin
    Xu Ying-jie
    Que Jing
    Wang Xiao-dong
    He Hao
    Li Wei
    Zuo Yong
    [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36 (12) : 4082 - 4087
  • [6] Image De-noising by Bayesian Regression
    Cohen, Shimon
    Ben-Ari, Rami
    [J]. IMAGE ANALYSIS AND PROCESSING - ICIAP 2011, PT I, 2011, 6978 : 19 - 28
  • [7] De-noising of underwater acoustic signals based on ICA feature extraction
    Wei, K
    Bin, Y
    [J]. PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS AND APPLICATIONS, PROCEEDINGS, 2005, 3773 : 917 - 924
  • [8] A multiresolution nonparametric regression and image de-noising
    Katkovnik, V
    [J]. 2003 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL 3, PROCEEDINGS, 2003, : 385 - 388
  • [9] Fault Feature Extraction of Hydraulic Pump Based on CNC De-noising and HHT
    Wang Y.
    Li H.
    Ye P.
    [J]. Wang, Yukui, 2015, Springer Science and Business Media, LLC (15) : 139 - 151
  • [10] Robust image segmentation using pulse-coupled neural network with de-noising by kernel PCA
    Pu, Jiexin
    Zhang, Hongyi
    Zhang, Haichao
    Wang, Y.
    [J]. IEEE ICMA 2006: PROCEEDING OF THE 2006 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION, VOLS 1-3, PROCEEDINGS, 2006, : 561 - +