INPUT SPACE REGULARIZATION STABILIZES PRE-IMAGES FOR KERNEL PCA DE-NOISING

被引:0
|
作者
Abrahamsen, Trine Julie [1 ]
Hansen, Lars Kai [1 ]
机构
[1] Tech Univ Denmark, DTU Informat, DK-2800 Lyngby, Denmark
关键词
Kernel PCA; Pre-image; De-noising; COMPONENT ANALYSIS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Solution of the pre-image problem is key to efficient non-linear de-noising using kernel Principal Component Analysis. Pre-image estimation is inherently ill-posed for typical kernels used in applications and consequently the most widely used estimation schemes lack stability. For de-noising applications we propose input space distance regularization as a stabilizer for pre-image estimation. We perform extensive experiments on the USPS digit modeling problem to evaluate the stability of three widely used pre-image estimators. We show that the previous methods lack stability when the feature mapping is non-linear, however, by applying a simple input space distance regularizer we can reduce variability with very limited sacrifice in terms of de-noising efficiency.
引用
收藏
页码:204 / 209
页数:6
相关论文
共 50 条
  • [1] Regularized Pre-image Estimation for Kernel PCA De-noising Input Space Regularization and Sparse Reconstruction
    Abrahamsen, Trine Julie
    Hansen, Lars Kai
    [J]. JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2011, 65 (03): : 403 - 412
  • [2] Robust de-noising by kernel PCA
    Takahashi, T
    Kurita, T
    [J]. ARTIFICIAL NEURAL NETWORKS - ICANN 2002, 2002, 2415 : 739 - 744
  • [3] Kernel PCA and de-noising in feature spaces
    Mika, S
    Schölkopf, B
    Smola, A
    Müller, KR
    Scholz, M
    Rätsch, G
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 11, 1999, 11 : 536 - 542
  • [4] Kernel PCA for feature extraction and de-noising in nonlinear regression
    Rosipal, R
    Girolami, M
    Trejo, LJ
    Cichocki, A
    [J]. NEURAL COMPUTING & APPLICATIONS, 2001, 10 (03): : 231 - 243
  • [5] Kernel PCA for Feature Extraction and De-Noising in Nonlinear Regression
    Roman Rosipal
    Mark Girolami
    Leonard J. Trejo
    Andrzej Cichocki
    [J]. Neural Computing & Applications, 2001, 10 : 231 - 243
  • [6] DE-NOISING OF SAR IMAGES BASED ON WAVELET-CONTOURLET DOMAIN AND PCA
    Fang, Jing
    Wang, Dong
    Xiao, Yang
    Saikrishna, D. Ajay
    [J]. 2014 12TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP), 2014, : 942 - 945
  • [7] De-noising SPECT/PET images using cross-scale regularization
    Jin, YP
    Angelini, ED
    Esser, PD
    Laine, AF
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2003, PT 2, 2003, 2879 : 32 - 40
  • [8] Signal de-noising using the wavelet transform and regularization
    John, AS
    Desai, UB
    [J]. 1997 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I - V: VOL I: PLENARY, EXPERT SUMMARIES, SPECIAL, AUDIO, UNDERWATER ACOUSTICS, VLSI; VOL II: SPEECH PROCESSING; VOL III: SPEECH PROCESSING, DIGITAL SIGNAL PROCESSING; VOL IV: MULTIDIMENSIONAL SIGNAL PROCESSING, NEURAL NETWORKS - VOL V: STATISTICAL SIGNAL AND ARRAY PROCESSING, APPLICATIONS, 1997, : 1861 - 1864
  • [9] Robust image segmentation using pulse-coupled neural network with de-noising by kernel PCA
    Pu, Jiexin
    Zhang, Hongyi
    Zhang, Haichao
    Wang, Y.
    [J]. IEEE ICMA 2006: PROCEEDING OF THE 2006 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION, VOLS 1-3, PROCEEDINGS, 2006, : 561 - +
  • [10] The Effect of Multiscale PCA De-noising in Epileptic Seizure Detection
    Kevric, Jasmin
    Subasi, Abdulhamit
    [J]. JOURNAL OF MEDICAL SYSTEMS, 2014, 38 (10)