Robust de-noising by kernel PCA

被引:0
|
作者
Takahashi, T [1 ]
Kurita, T
机构
[1] Ryukoku Univ, Dept Appl Math & Informat, Shiga 5202194, Japan
[2] Natl Inst Adv Ind Sci & Technol, AIST, Tsukuba, Ibaraki 3058568, Japan
来源
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, kernel Principal Component Analysis is becoming a popular technique for feature extraction. It enables us to extract nonlinear features and therefore performs as a powerful preprocessing step for classification. There is one drawback, however, that extracted feature components are sensitive to outliers contained in data. This is a characteristic common to all PCA-based techniques. In this paper, we propose a method which is able to remove outliers in data vectors and replace them with the estimated values via kernel PCA. By repeating this process several times, we can get the feature components less affected with outliers. We apply this method to a set of face image data and confirm its validity for a recognition task.
引用
收藏
页码:739 / 744
页数:6
相关论文
共 50 条
  • [1] Kernel PCA and de-noising in feature spaces
    Mika, S
    Schölkopf, B
    Smola, A
    Müller, KR
    Scholz, M
    Rätsch, G
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 11, 1999, 11 : 536 - 542
  • [2] Kernel PCA for feature extraction and de-noising in nonlinear regression
    Rosipal, R
    Girolami, M
    Trejo, LJ
    Cichocki, A
    [J]. NEURAL COMPUTING & APPLICATIONS, 2001, 10 (03): : 231 - 243
  • [3] Kernel PCA for Feature Extraction and De-Noising in Nonlinear Regression
    Roman Rosipal
    Mark Girolami
    Leonard J. Trejo
    Andrzej Cichocki
    [J]. Neural Computing & Applications, 2001, 10 : 231 - 243
  • [4] Robust image segmentation using pulse-coupled neural network with de-noising by kernel PCA
    Pu, Jiexin
    Zhang, Hongyi
    Zhang, Haichao
    Wang, Y.
    [J]. IEEE ICMA 2006: PROCEEDING OF THE 2006 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION, VOLS 1-3, PROCEEDINGS, 2006, : 561 - +
  • [5] INPUT SPACE REGULARIZATION STABILIZES PRE-IMAGES FOR KERNEL PCA DE-NOISING
    Abrahamsen, Trine Julie
    Hansen, Lars Kai
    [J]. 2009 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, 2009, : 204 - 209
  • [6] The Effect of Multiscale PCA De-noising in Epileptic Seizure Detection
    Kevric, Jasmin
    Subasi, Abdulhamit
    [J]. JOURNAL OF MEDICAL SYSTEMS, 2014, 38 (10)
  • [7] The Effect of Multiscale PCA De-noising in Epileptic Seizure Detection
    Jasmin Kevric
    Abdulhamit Subasi
    [J]. Journal of Medical Systems, 2014, 38
  • [8] Regularized Pre-image Estimation for Kernel PCA De-noising Input Space Regularization and Sparse Reconstruction
    Abrahamsen, Trine Julie
    Hansen, Lars Kai
    [J]. JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2011, 65 (03): : 403 - 412
  • [9] Improving de-noising by coefficient de-noising and dyadic wavelet transform
    Zhu, HL
    Kwok, JI
    Qu, LS
    [J]. 16TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL II, PROCEEDINGS, 2002, : 273 - 276
  • [10] Time-Scale Similarities for Robust Image De-noising
    Bruni, Vittoria
    Vitulano, Domenico
    [J]. JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2012, 44 (01) : 52 - 64