GENERALIZED NUMERICAL RANGES AND QUANTUM ERROR CORRECTION

被引:0
|
作者
Li, Chi-Kwong [1 ]
Poon, Yiu-Tung [2 ]
机构
[1] Coll William & Mary, Dept Math, Williamsburg, VA 23185 USA
[2] Iowa State Univ, Dept Math, Ames, IA 50011 USA
基金
美国国家科学基金会;
关键词
Quantum error correction; joint higher rank numerical range; joint essential numerical range; self-adjoint operator; Hilbert space;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a noisy quantum channel, a quantum error correcting code of dimension k exists if and only if the joint rank-k numerical range associated with the error operators of the channel is non-empty. In this paper, geometric properties of the joint rank k-numerical range are obtained and their implications to quantum computing are discussed. It is shown that for a given k if the dimension of the underlying Hilbert space of the quantum states is sufficiently large, then the joint rank k-numerical range of operators is always star-shaped and contains the convex hull of the rank (k) over cap -numerical range of the operators for sufficiently large (k) over cap. In case the operators are infinite dimensional, the joint rank cc-numerical range of the operators is a convex set closely related to the joint essential numerical ranges of the operators.
引用
收藏
页码:335 / 351
页数:17
相关论文
共 50 条
  • [31] Quantum error correction for beginners
    Devitt, Simon J.
    Munro, William J.
    Nemoto, Kae
    REPORTS ON PROGRESS IN PHYSICS, 2013, 76 (07)
  • [32] Quantum Error Correction for Metrology
    Kessler, E. M.
    Lovchinsky, I.
    Sushkov, A. O.
    Lukin, M. D.
    PHYSICAL REVIEW LETTERS, 2014, 112 (15)
  • [33] Introduction to quantum error correction
    Steane, AM
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1998, 356 (1743): : 1739 - 1757
  • [34] Experimental quantum error correction
    Cory, DG
    Price, MD
    Maas, W
    Knill, E
    Laflamme, R
    Zurek, WH
    Havel, TF
    Somaroo, SS
    PHYSICAL REVIEW LETTERS, 1998, 81 (10) : 2152 - 2155
  • [35] Approximate Quantum Error Correction
    Schumacher, Benjamin
    Westmoreland, Michael D.
    QUANTUM INFORMATION PROCESSING, 2002, 1 (1-2) : 5 - 12
  • [36] Methods of quantum error correction
    Grassl, M
    ISCAS 2000: IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS - PROCEEDINGS, VOL I: EMERGING TECHNOLOGIES FOR THE 21ST CENTURY, 2000, : 740 - 743
  • [37] Catalytic Quantum Error Correction
    Brun, Todd A.
    Devetak, Igor
    Hsieh, Min-Hsiu
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (06) : 3073 - 3089
  • [38] Nonlinear quantum error correction
    Reichert, Maximilian
    Tessler, Louis W.
    Bergmann, Marcel
    van Loock, Peter
    Byrnes, Tim
    PHYSICAL REVIEW A, 2022, 105 (06)
  • [39] Motional quantum error correction
    Steinbach, J
    Twamley, J
    JOURNAL OF MODERN OPTICS, 2000, 47 (2-3) : 453 - 485
  • [40] Realization of quantum error correction
    J. Chiaverini
    D. Leibfried
    T. Schaetz
    M. D. Barrett
    R. B. Blakestad
    J. Britton
    W. M. Itano
    J. D. Jost
    E. Knill
    C. Langer
    R. Ozeri
    D. J. Wineland
    Nature, 2004, 432 : 602 - 605