GENERALIZED NUMERICAL RANGES AND QUANTUM ERROR CORRECTION

被引:0
|
作者
Li, Chi-Kwong [1 ]
Poon, Yiu-Tung [2 ]
机构
[1] Coll William & Mary, Dept Math, Williamsburg, VA 23185 USA
[2] Iowa State Univ, Dept Math, Ames, IA 50011 USA
基金
美国国家科学基金会;
关键词
Quantum error correction; joint higher rank numerical range; joint essential numerical range; self-adjoint operator; Hilbert space;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a noisy quantum channel, a quantum error correcting code of dimension k exists if and only if the joint rank-k numerical range associated with the error operators of the channel is non-empty. In this paper, geometric properties of the joint rank k-numerical range are obtained and their implications to quantum computing are discussed. It is shown that for a given k if the dimension of the underlying Hilbert space of the quantum states is sufficiently large, then the joint rank k-numerical range of operators is always star-shaped and contains the convex hull of the rank (k) over cap -numerical range of the operators for sufficiently large (k) over cap. In case the operators are infinite dimensional, the joint rank cc-numerical range of the operators is a convex set closely related to the joint essential numerical ranges of the operators.
引用
收藏
页码:335 / 351
页数:17
相关论文
共 50 条
  • [21] Analog quantum error correction
    Lloyd, S
    Slotine, JJE
    PHYSICAL REVIEW LETTERS, 1998, 80 (18) : 4088 - 4091
  • [22] Tracking quantum error correction
    Fukui, Kosuke
    Tomita, Akihisa
    Okamoto, Atsushi
    PHYSICAL REVIEW A, 2018, 98 (02)
  • [23] Quantum Error Correction at the Threshold
    不详
    IEEE SPECTRUM, 2022, 59 (07) : 28 - 34
  • [24] Quantum error correction for communication
    Ekert, A
    Macchiavello, C
    PHYSICAL REVIEW LETTERS, 1996, 77 (12) : 2585 - 2588
  • [25] Continuous quantum error correction
    Sarovar, M
    Milburn, GJ
    QUANTUM COMMUNICATION, MEASUREMENT AND COMPUTING, 2004, 734 : 121 - 126
  • [26] Perturbative Quantum Error Correction
    Beny, Cedric
    PHYSICAL REVIEW LETTERS, 2011, 107 (08)
  • [27] On the Probabilistic Quantum Error Correction
    Kukulski, Ryszard
    Pawela, Lukasz
    Puchala, Zbigniew
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (07) : 4620 - 4640
  • [28] Decoherence and quantum error correction
    Knight, PL
    Plenio, MB
    Vedral, V
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1997, 355 (1733): : 2381 - 2385
  • [29] Quantum memories and error correction
    Wootton, James R.
    JOURNAL OF MODERN OPTICS, 2012, 59 (20) : 1717 - 1738
  • [30] Entanglement and quantum error correction
    Hiroshima, Tohya
    Hayashi, Masahito
    QUANTUM COMPUTATION AND INFORMATION: FROM THEORY TO EXPERIMENT, 2006, 102 : 111 - +