GENERALIZED NUMERICAL RANGES AND QUANTUM ERROR CORRECTION

被引:0
|
作者
Li, Chi-Kwong [1 ]
Poon, Yiu-Tung [2 ]
机构
[1] Coll William & Mary, Dept Math, Williamsburg, VA 23185 USA
[2] Iowa State Univ, Dept Math, Ames, IA 50011 USA
基金
美国国家科学基金会;
关键词
Quantum error correction; joint higher rank numerical range; joint essential numerical range; self-adjoint operator; Hilbert space;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a noisy quantum channel, a quantum error correcting code of dimension k exists if and only if the joint rank-k numerical range associated with the error operators of the channel is non-empty. In this paper, geometric properties of the joint rank k-numerical range are obtained and their implications to quantum computing are discussed. It is shown that for a given k if the dimension of the underlying Hilbert space of the quantum states is sufficiently large, then the joint rank k-numerical range of operators is always star-shaped and contains the convex hull of the rank (k) over cap -numerical range of the operators for sufficiently large (k) over cap. In case the operators are infinite dimensional, the joint rank cc-numerical range of the operators is a convex set closely related to the joint essential numerical ranges of the operators.
引用
收藏
页码:335 / 351
页数:17
相关论文
共 50 条
  • [41] Approaches to quantum error correction
    Kempe, Julia
    QUANTUM DECOHERENCE: POINCARE SEMINAR 2005, 2007, 48 : 85 - 123
  • [42] Deep Quantum Error Correction
    Choukroun, Yoni
    Wolf, Lior
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 1, 2024, : 64 - 72
  • [43] Operator quantum error correction
    Kribs, David W.
    Laflamme, Raymond
    Poulin, David
    Lesosky, Maia
    QUANTUM INFORMATION & COMPUTATION, 2006, 6 (4-5) : 382 - 398
  • [44] Automatic quantum error correction
    Barnes, JP
    Warren, WS
    PHYSICAL REVIEW LETTERS, 2000, 85 (04) : 856 - 859
  • [45] Approximate Quantum Error Correction
    Benjamin Schumacher
    Michael D. Westmoreland
    Quantum Information Processing, 2002, 1 : 5 - 12
  • [46] Quantum error correction of observables
    Beny, Cedric
    Kempf, Achim
    Kribs, David W.
    PHYSICAL REVIEW A, 2007, 76 (04):
  • [47] Closing In on Quantum Error Correction
    Monroe, Don
    COMMUNICATIONS OF THE ACM, 2019, 62 (10) : 11 - 13
  • [48] Generalized Noncoherent Space-Time Block Codes from Quantum Error Correction
    Lanham, S. Andrew
    Bradley, Eli
    La Cour, Brian R.
    2022 IEEE MILITARY COMMUNICATIONS CONFERENCE (MILCOM), 2022,
  • [49] Joint numerical ranges, quantum maps, and joint numerical shadows
    Gutkin, Eugene
    Zyczkowski, Karol
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (05) : 2394 - 2404
  • [50] Research problems on numerical ranges in quantum computing
    Kribs, David W.
    Pasieka, Aron
    Laforest, Martin
    Ryan, Colm
    da Silva, Marcus P.
    LINEAR & MULTILINEAR ALGEBRA, 2009, 57 (05): : 491 - 502