Approximate Quantum Error Correction

被引:91
|
作者
Schumacher, Benjamin [1 ]
Westmoreland, Michael D. [2 ]
机构
[1] Kenyon Coll, Dept Phys, Gambier, OH 43022 USA
[2] Denison Univ, Dept Math Sci, Granville, OH 43023 USA
关键词
quantum error correction;
D O I
10.1023/A:1019653202562
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The errors that arise in a quantum channel can be corrected perfectly if and only if the channel does not decrease the coherent information of the input state. We show that, if the loss of coherent information is small, then approximate quantum error correction is possible.
引用
收藏
页码:5 / 12
页数:8
相关论文
共 50 条
  • [1] Approximate Quantum Error Correction
    Benjamin Schumacher
    Michael D. Westmoreland
    Quantum Information Processing, 2002, 1 : 5 - 12
  • [2] Approximate symmetries and quantum error correction
    Liu, Zi-Wen
    Zhou, Sisi
    NPJ QUANTUM INFORMATION, 2023, 9 (01)
  • [3] Approximate symmetries and quantum error correction
    Zi-Wen Liu
    Sisi Zhou
    npj Quantum Information, 9
  • [4] Optimal approximate quantum error correction for quantum metrology
    Zhou, Sisi
    Jiang, Liang
    PHYSICAL REVIEW RESEARCH, 2020, 2 (01):
  • [5] Entanglement measures and approximate quantum error correction
    Buscemi, Francesco
    PHYSICAL REVIEW A, 2008, 77 (01)
  • [6] Approximate Quantum Error Correction for Correlated Noise
    Ben-Aroya, Avraham
    Ta-Shma, Amnon
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (06) : 3982 - 3988
  • [7] Continuous Symmetries and Approximate Quantum Error Correction
    Faist, Philippe
    Nezami, Sepehr
    Albert, Victor V.
    Salton, Grant
    Pastawski, Fernando
    Hayden, Patrick
    Preskill, John
    PHYSICAL REVIEW X, 2020, 10 (04)
  • [8] An entropic analysis of approximate quantum error correction
    Cafaro, Carlo
    van Loock, Peter
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2014, 404 : 34 - 46
  • [9] Uncertainty relations and approximate quantum error correction
    Renes, Joseph M.
    PHYSICAL REVIEW A, 2016, 94 (03)
  • [10] Towards a unified framework for approximate quantum error correction
    Mandayam, Prabha
    Ng, Hui Khoon
    PHYSICAL REVIEW A, 2012, 86 (01):