Approximate Quantum Error Correction

被引:91
|
作者
Schumacher, Benjamin [1 ]
Westmoreland, Michael D. [2 ]
机构
[1] Kenyon Coll, Dept Phys, Gambier, OH 43022 USA
[2] Denison Univ, Dept Math Sci, Granville, OH 43023 USA
关键词
quantum error correction;
D O I
10.1023/A:1019653202562
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The errors that arise in a quantum channel can be corrected perfectly if and only if the channel does not decrease the coherent information of the input state. We show that, if the loss of coherent information is small, then approximate quantum error correction is possible.
引用
收藏
页码:5 / 12
页数:8
相关论文
共 50 条
  • [21] Approximate quantum error correction can lead to better codes
    Leung, DW
    Nielsen, MA
    Chuang, IL
    Yamamoto, Y
    PHYSICAL REVIEW A, 1997, 56 (04): : 2567 - 2573
  • [22] A Simple Comparative Analysis of Exact and Approximate Quantum Error Correction
    Cafaro, Carlo
    van Loock, Peter
    OPEN SYSTEMS & INFORMATION DYNAMICS, 2014, 21 (03):
  • [23] Simple approach to approximate quantum error correction based on the transpose channel
    Ng, Hui Khoon
    Mandayam, Prabha
    PHYSICAL REVIEW A, 2010, 81 (06):
  • [24] Approximate Quantum Error Correction Revisited: Introducing the Alpha-Bit
    Patrick Hayden
    Geoffrey Penington
    Communications in Mathematical Physics, 2020, 374 : 369 - 432
  • [25] Approximate Quantum Error Correction Revisited: Introducing the Alpha-Bit
    Hayden, Patrick
    Penington, Geoffrey
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 374 (02) : 369 - 432
  • [26] Approximate quantum error correction for generalized amplitude-damping errors
    Cafaro, Carlo
    van Loock, Peter
    PHYSICAL REVIEW A, 2014, 89 (02):
  • [27] Comparison of a quantum error-correction threshold for exact and approximate errors
    Gutierrez, Mauricio
    Brown, Kenneth R.
    PHYSICAL REVIEW A, 2015, 91 (02):
  • [28] Linear Programming Bounds for Approximate Quantum Error Correction Over Arbitrary Quantum Channels
    Ouyang, Yingkai
    Lai, Ching-Yi
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (08) : 5234 - 5247
  • [29] Error Correction for Approximate Computing
    Zhang, Hang
    Abdi, Afshin
    Fekri, Faramarz
    Esmaeilzadeh, Hadi
    2016 54TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2016, : 948 - 953
  • [30] Renormalization group and approximate error correction
    Furuya, Keiichiro
    Lashkari, Nima
    Moosa, Mudassir
    PHYSICAL REVIEW D, 2022, 106 (10)