Efficient RNS to binary converters for the new 4-moduli set {2n, 2n+1-1, 2n-1, 2n-1-1}

被引:2
|
作者
Esmaeildoust, Mohammad [1 ]
Navi, Keivan [1 ]
Taheri, MohammadReza [2 ]
Molahosseini, Amir Sabbagh [3 ]
Khodambashi, Siavash [1 ]
机构
[1] Shahid Beheshti Univ, Fac Elect & Comp Engn, Tehran, Iran
[2] Islamic Azad Univ, Dept Comp Engn, Sci & Res Branch, Tehran, Iran
[3] Islamic Azad Univ, Dept Comp Engn, Kerman Branch, Kerman, Iran
来源
IEICE ELECTRONICS EXPRESS | 2012年 / 9卷 / 01期
关键词
computer arithmetic; residue number system (RNS); RNS to binary (reverse) converter; moduli sets;
D O I
10.1587/elex.9.1
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we propose efficient designs of residue number system (RNS) to binary converter for the balanced moduli set {2(n), 2(n+1) - 1, 2(n) - 1, 2(n-1) - 1} where n has even values. This new moduli set is completely free from modulo-(2(k) + 1)-type which results in high-speed modulo arithmetic channels for RNS. Also, mixed-radix conversion (MRC) algorithm is used to achieve both an arithmetic-based and reduced-complexity two-level RNS to binary converter architectures. The proposed moduli set provides fast arithmetic operation with higher speed of the reverse converter comparing to other five moduli set which is found in literature.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 50 条
  • [21] Fast low energy RNS comparators for 4-moduli sets {2n ± 1, 2n, m} with m ∈ {2n+1±1, 2n-1-1}
    Torabi, Zeinab
    Jaberipur, Ghassem
    INTEGRATION-THE VLSI JOURNAL, 2016, 55 : 155 - 161
  • [22] AN RNS TO BINARY CONVERTER IN 2N + 1, 2N, 2N - 1 MODULI SET
    PREMKUMAR, AB
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-ANALOG AND DIGITAL SIGNAL PROCESSING, 1992, 39 (07): : 480 - 482
  • [23] On the Design of RNS Reverse Converters for the Four-Moduli Set {2n+1, 2n-1, 2n, 2n+1+1}
    Sousa, Leonel
    Antao, Samuel
    Chaves, Ricardo
    IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2013, 21 (10) : 1945 - 1949
  • [24] An Efficient Residue-to-Binary converter for the moduli set {2n-1-1, 2n+k, 2n-1}
    Latha, M. V. N. Madhavi
    Rachh, Rashmi Ramesh
    Mohan, P. V. Ananda
    2017 IEEE ASIA PACIFIC CONFERENCE ON POSTGRADUATE RESEARCH IN MICROELECTRONICS AND ELECTRONICS (PRIMEASIA), 2017, : 9 - 12
  • [25] A VLSI-Efficient Signed Magnitude Comparator for {2n-1, 2n,2n+1-1} RNS
    Kumar, Sachin
    Chang, Chip-Hong
    2016 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2016, : 1966 - 1969
  • [26] A reverse converter for the 4-moduli superset {2n-1, 2n, 2n+1, 2n+1+1}
    Bhardwaj, M
    Srikanthan, T
    Clarke, CT
    14TH IEEE SYMPOSIUM ON COMPUTER ARITHMETIC, PROCEEDINGS, 1999, : 168 - 175
  • [27] Reverse converter for the 4-moduli superset {2n-1, 2n, 2n+1, 2n+1+1}
    Bhardwaj, M.
    Srikanthan, T.
    Clarke, C.T.
    Proceedings - Symposium on Computer Arithmetic, 1999, : 168 - 175
  • [28] Residue-to-binary arithmetic converter for moduli set {2n-1,2n,2n+1,2n+1-1}
    Mathew, J
    Radhakrishnan, D
    Srikanthan, T
    PROCEEDINGS OF THE IEEE-EURASIP WORKSHOP ON NONLINEAR SIGNAL AND IMAGE PROCESSING (NSIP'99), 1999, : 190 - 193
  • [29] An Improved RNS Reverse Converter for the {22n+1-1, 2n, 2n-1} Moduli Set
    Gbolagade, K. A.
    Chaves, R.
    Sousa, L.
    Cotofana, S. D.
    2010 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, 2010, : 2103 - 2106
  • [30] Evaluation of Mixed-Radix Digit Computation Techniques for the Three Moduli RNS {2n-1, 2n, 2n+1-1}
    Mohan, P. V. Ananda
    Phalguna, P. S.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2021, 68 (04) : 1418 - 1422