Evaluation of Mixed-Radix Digit Computation Techniques for the Three Moduli RNS {2n-1, 2n, 2n+1-1}

被引:2
|
作者
Mohan, P. V. Ananda [1 ]
Phalguna, P. S. [2 ]
机构
[1] CDAC, Dept Res & Dev, Bengaluru 560038, India
[2] Manipal Acad Higher Educ, Manipal Inst Technol, Dept Elect & Commun Engn, Manipal 576104, India
关键词
Computer architecture; Adders; Hardware; Finite impulse response filters; Discrete wavelet transforms; Residue number system (RNS); reverse converters; three-moduli sets; mixed-radix conversion (MRC); base extension; 3-MODULI SET 2(N+1)-1; NUMBER-SYSTEMS; LOW-POWER; CONVERTER;
D O I
10.1109/TCSII.2020.3035350
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this brief, we evaluate two techniques for obtaining mixed-radix digits using mixed-radix conversion technique, for the residue number system (RNS) moduli set {2(n) - 1, 2(n), 2(n+1) - 1}. These are needed for comparison of two numbers in residue form, base extension to modulus 2(n+e) and reverse conversion. The complete architectures are derived to estimate the hardware resource requirement and computation time for deriving the mixed-radix digits. The proposed techniques are also compared with designs based on other techniques available in literature. The trade-offs regarding hardware resource requirement, computation time and power dissipation are brought out.
引用
收藏
页码:1418 / 1422
页数:5
相关论文
共 50 条
  • [1] A Scaler Design for the RNS Three-Moduli Set {2n+1-1, 2n, 2n-1} Based on Mixed-Radix Conversion
    Hiasat, Ahmad
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2020, 29 (03)
  • [2] RNS-to-binary converter for a new three-moduli set {2n+1-1, 2n, 2n-1}
    Mohan, Pernmaraju V. Ananda
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2007, 54 (09) : 775 - 779
  • [3] Memoryless RNS-to-Binary Converters for the {2n+1-1, 2n, 2n-1} Moduli Set
    Gbolagade, Kazeem Alagbe
    Voicu, George Razvan
    Cotofana, Sorin Dan
    21ST IEEE INTERNATIONAL CONFERENCE ON APPLICATION-SPECIFIC SYSTEMS, ARCHITECTURES AND PROCESSORS, 2010,
  • [4] Fast Sign Detection Algorithm for the RNS Moduli Set {2n+1-1, 2n-1, 2n}
    Xu, Minghe
    Bian, Zhenpeng
    Yao, Ruohe
    IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2015, 23 (02) : 379 - 383
  • [5] An Efficient Reverse Converter for the Three-Moduli Set (2n+1-1, 2n, 2n-1)
    Hiasat, Ahmad
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2017, 64 (08) : 962 - 966
  • [6] RNS-to-binary converters for two four-moduli sets {2n-1,2n, 2n+1, 2n+1-1} and {2n-1, 2n, 2n+1, 2n+1+1}
    Mohan, P. V. Ananda
    Premkumar, A. B.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2007, 54 (06) : 1245 - 1254
  • [7] An improved reverse converter for the moduli set {2n-1, 2n, 2n+1, 2n+1-1}
    Hosseinzadeh, Mehdi
    Molahosseini, Amir Sabbagh
    Navi, Keivan
    IEICE ELECTRONICS EXPRESS, 2008, 5 (17) : 672 - 677
  • [8] Efficient RNS to binary converters for the new 4-moduli set {2n, 2n+1-1, 2n-1, 2n-1-1}
    Esmaeildoust, Mohammad
    Navi, Keivan
    Taheri, MohammadReza
    Molahosseini, Amir Sabbagh
    Khodambashi, Siavash
    IEICE ELECTRONICS EXPRESS, 2012, 9 (01): : 1 - 7
  • [9] RNS-to-Binary Converter for New Four-Moduli Set {2n-1, 2n, 2n+1-1, 2n+1+2n-1}
    Quan Si
    Pan Weitao
    Xie Yuanbin
    Hao Yue
    CHINESE JOURNAL OF ELECTRONICS, 2012, 21 (03): : 430 - 434
  • [10] An Efficient 2n RNS Scaler for Moduli Set {2n-1, 2n, 2n+1}
    Ye, Yanlong
    Ma, Shang
    Hu, Jianhao
    ISISE 2008: INTERNATIONAL SYMPOSIUM ON INFORMATION SCIENCE AND ENGINEERING, VOL 2, 2008, : 511 - 515