Efficient RNS to binary converters for the new 4-moduli set {2n, 2n+1-1, 2n-1, 2n-1-1}

被引:2
|
作者
Esmaeildoust, Mohammad [1 ]
Navi, Keivan [1 ]
Taheri, MohammadReza [2 ]
Molahosseini, Amir Sabbagh [3 ]
Khodambashi, Siavash [1 ]
机构
[1] Shahid Beheshti Univ, Fac Elect & Comp Engn, Tehran, Iran
[2] Islamic Azad Univ, Dept Comp Engn, Sci & Res Branch, Tehran, Iran
[3] Islamic Azad Univ, Dept Comp Engn, Kerman Branch, Kerman, Iran
来源
IEICE ELECTRONICS EXPRESS | 2012年 / 9卷 / 01期
关键词
computer arithmetic; residue number system (RNS); RNS to binary (reverse) converter; moduli sets;
D O I
10.1587/elex.9.1
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we propose efficient designs of residue number system (RNS) to binary converter for the balanced moduli set {2(n), 2(n+1) - 1, 2(n) - 1, 2(n-1) - 1} where n has even values. This new moduli set is completely free from modulo-(2(k) + 1)-type which results in high-speed modulo arithmetic channels for RNS. Also, mixed-radix conversion (MRC) algorithm is used to achieve both an arithmetic-based and reduced-complexity two-level RNS to binary converter architectures. The proposed moduli set provides fast arithmetic operation with higher speed of the reverse converter comparing to other five moduli set which is found in literature.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 50 条
  • [41] Design of Reverse Converters for a New Flexible RNS Five-Moduli Set {2k, 2n - 1, 2n + 1, 2n+1 - 1, 2n-1 - 1} (n Even) (vol 36, pg 4593, 2017)
    Patronik, Piotr
    Piestrak, Stanislaw J.
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2018, 37 (11) : 5197 - 5197
  • [42] Sign Identifier for the Enhanced Three Moduli Set {2n+k, 2n-1, 2n+1-1}
    Hiasat, Ahmad
    Sousa, Leonel
    JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2019, 91 (08): : 953 - 961
  • [43] Shifter circuits for {2n+1, 2n, 2n-1} RNS
    Bakalis, D.
    Vergos, H. T.
    ELECTRONICS LETTERS, 2009, 45 (01) : 27 - 28
  • [44] Residue-to-Binary Converter for the New RNS Moduli Set {22n-2, 2n-1, 2'1+1}
    Vassalos, Evangelos
    Bakalis, Dimitris
    2019 PANHELLENIC CONFERENCE ON ELECTRONICS AND TELECOMMUNICATIONS (PACET2019), 2019, : 22 - 25
  • [45] Residue number system to binary converter for the moduli set (2n-1, 2n-1, 2n+1)
    Hiasat, A
    Sweidan, A
    JOURNAL OF SYSTEMS ARCHITECTURE, 2003, 49 (1-2) : 53 - 58
  • [46] Fully parallel comparator for the moduli set {2n, 2n-1, 2n+1}
    Eivazi, Shiva Taghipour
    Hosseinzadeh, Mehdi
    Mirmotahari, Omid
    IEICE ELECTRONICS EXPRESS, 2011, 8 (12): : 897 - 901
  • [47] Efficient two-level reverse converters for the four-moduli set {2n−1, 2n–1, 2n−1–1, 2n+1–1}
    Mohammad Obeidi Daghlavi
    Mohammad Reza Noorimehr
    Mohammad Esmaeildoust
    Analog Integrated Circuits and Signal Processing, 2021, 108 : 75 - 87
  • [48] Simple, Fast, and Exact RNS Scaler for the Three-Moduli Set {2n-1, 2n, 2n+1}
    Chang, Chip-Hong
    Low, Jeremy Yung Shern
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2011, 58 (11) : 2686 - 2697
  • [49] A Unified Addition Structure for Moduli Set {2n-1, 2n, 2n+1} Based on a Novel RNS Representation
    Timarchi, Somayeh
    Fazlali, Mahmood
    Cotofana, Sorin D.
    2010 IEEE INTERNATIONAL CONFERENCE ON COMPUTER DESIGN, 2010, : 247 - 252
  • [50] BINARY TO RNS ENCODER FOR THE MODULI SET {2(n) - 1, 2(n), 2(n)
    Krstic, Ivan
    Stamenkovic, Negovan
    Stojanovic, Vidosav
    FACTA UNIVERSITATIS-SERIES ELECTRONICS AND ENERGETICS, 2016, 29 (01) : 101 - 112