Dynamic RGB-D Visual Odometry

被引:0
|
作者
Yang, Dongsheng [1 ]
Bi, Shusheng [1 ]
Cai, Yueri [1 ]
Zheng, Jingxiang [1 ]
Yuan, Chang [1 ]
机构
[1] Beihang Univ, Robot Inst, Beijing, Peoples R China
关键词
visual odometry; dynamic envrionments; RGB-D camera; accuracy;
D O I
暂无
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
The aim of this paper is to estimate the ego-motion of an RGB-D camera in dynamic environments. A semi-direct motion estimation pipeline is modified for the RGB-D camera. In order to avoid the impact of dynamic objects, a new mapping method based on scoring mechanism is proposed, which can effectively remove feature points on dynamic objects and results a map contains only static points. The method is evaluated not only with the TUM RGB-D benchmark but also using an Asus Xtion Pro Live camera in a dynamic office environment. The experimental results show that our method has higher accuracy in dynamic environments and has considerable accuracy in static environments. In some high dynamic scenes, the accuracy of our method is more than 7 times higher than other RGB-D visual odometry algorithms.
引用
收藏
页码:941 / 946
页数:6
相关论文
共 50 条
  • [21] Bi-direction Direct RGB-D Visual Odometry
    Cai, Jiyuan
    Luo, Lingkun
    Hu, Shiqiang
    [J]. APPLIED ARTIFICIAL INTELLIGENCE, 2020, 34 (14) : 1137 - 1158
  • [22] A RGB-D visual odometry method based on line features
    Huang P.
    Cao Z.
    Huang J.
    [J]. 1600, Editorial Department of Journal of Chinese Inertial Technology (29): : 340 - 349
  • [23] Dense RGB-D visual odometry using inverse depth
    Gutierrez-Gomez, Daniel
    Mayol-Cuevas, Walterio
    Guerrero, J. J.
    [J]. ROBOTICS AND AUTONOMOUS SYSTEMS, 2016, 75 : 571 - 583
  • [24] Robust RGB-D visual odometry based on edges and points
    Yao, Erliang
    Zhang, Hexin
    Xu, Hui
    Song, Haitao
    Zhang, Guoliang
    [J]. ROBOTICS AND AUTONOMOUS SYSTEMS, 2018, 107 : 209 - 220
  • [25] Direct RGB-D Visual Odometry Based on Hybrid Strategy
    Cai, Jiyuan
    Luo, Lingkun
    Yu, Qiuyu
    Liu, Bing
    Hu, Shiqiang
    [J]. IEEE SENSORS JOURNAL, 2021, 21 (20) : 23278 - 23288
  • [26] Edge and Intensity based Visual Odometry for RGB-D Camera
    Yao, Erliang
    Zhang, Hexin
    Zhang, Guoliang
    Xu, Hui
    [J]. 2018 IEEE CSAA GUIDANCE, NAVIGATION AND CONTROL CONFERENCE (CGNCC), 2018,
  • [27] Effective Background Model-Based RGB-D Dense Visual Odometry in a Dynamic Environment
    Kim, Deok-Hwa
    Kim, Jong-Hwan
    [J]. IEEE TRANSACTIONS ON ROBOTICS, 2016, 32 (06) : 1565 - 1573
  • [28] A Benchmark for RGB-D Visual Odometry, 3D Reconstruction and SLAM
    Handa, Ankur
    Whelan, Thomas
    McDonald, John
    Davison, Andrew J.
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2014, : 1524 - 1531
  • [29] Bi-objective Optimization for Robust RGB-D Visual Odometry
    Han, Tao
    Xu, Chao
    Loxton, Ryan
    Xie, Lei
    [J]. 2015 27TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2015, : 1837 - 1844
  • [30] PLVO: Plane-line-based RGB-D Visual Odometry
    Sun Q.-X.
    Yuan J.
    Zhang X.-B.
    Gao Y.-X.
    [J]. Zidonghua Xuebao/Acta Automatica Sinica, 2023, 49 (10): : 2060 - 2072