Effective Background Model-Based RGB-D Dense Visual Odometry in a Dynamic Environment

被引:126
|
作者
Kim, Deok-Hwa [1 ]
Kim, Jong-Hwan [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Sch Elect Engn, Daejeon 34141, South Korea
基金
新加坡国家研究基金会;
关键词
Background subtraction; dynamic environment; simultaneous localization and mapping (SLAM); visual odometry; visual tracking;
D O I
10.1109/TRO.2016.2609395
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
This paper proposes a robust background model-based dense-visual-odometry (BaMVO) algorithm that uses an RGB-D sensor in a dynamic environment. The proposed algorithm estimates the background model represented by the nonparametric model from depth scenes and then estimates the ego-motion of the sensor using the energy-based dense-visual-odometry approach based on the estimated background model in order to consider moving objects. Experimental results demonstrate that the ego-motion is robustly obtained by BaMVO in a dynamic environment.
引用
下载
收藏
页码:1565 / 1573
页数:9
相关论文
共 50 条
  • [1] Nonparametric Statistical and Clustering Based RGB-D Dense Visual Odometry in a Dynamic Environment
    Zhou, Wugen
    Peng, Xiaodong
    Wang, Haijiao
    Liu, Bo
    3D RESEARCH, 2019, 10 (02):
  • [2] Dynamic RGB-D Visual Odometry
    Yang, Dongsheng
    Bi, Shusheng
    Cai, Yueri
    Zheng, Jingxiang
    Yuan, Chang
    2017 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (IEEE ROBIO 2017), 2017, : 941 - 946
  • [3] Feature Regions Segmentation based RGB-D Visual Odometry in Dynamic Environment
    Zhang, Yu
    Dai, Weichen
    Peng, Zhen
    Li, Ping
    Fang, Zheng
    IECON 2018 - 44TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2018, : 5648 - 5655
  • [4] Dense RGB-D visual odometry using inverse depth
    Gutierrez-Gomez, Daniel
    Mayol-Cuevas, Walterio
    Guerrero, J. J.
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2016, 75 : 571 - 583
  • [5] VISUAL ODOMETRY FOR RGB-D CAMERAS FOR DYNAMIC SCENES
    Azartash, Haleh
    Lee, Kyoung-Rok
    Nguyen, Truong Q.
    2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [6] RGB-D Dense Visual Odometry through Pixel Level Segmentation in Dynamic Environments
    Oh, Changsuk
    Jang, Youngseok
    Kim, H. Jin
    2019 19TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS 2019), 2019, : 1296 - 1300
  • [7] Visual Odometry Algorithm Using an RGB-D Sensor and IMU in a Highly Dynamic Environment
    Kim, Deok-Hwa
    Han, Seung-Beom
    Kim, Jong-Hwan
    ROBOT INTELLIGENCE TECHNOLOGY ANDAPPLICATIONS 3, 2015, 345 : 11 - 26
  • [8] Maximum Clique based RGB-D Visual Odometry
    Zhang, Yigong
    Hou, Zhixing
    Yang, Jian
    Kong, Hui
    2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 2764 - 2769
  • [9] An Adaptive Visual Odometry Based on RGB-D Sensors
    Zheng, Enhui
    Wang, Tantan
    Liu, Zheng
    Xu, Ling
    2019 4TH INTERNATIONAL CONFERENCE ON ELECTROMECHANICAL CONTROL TECHNOLOGY AND TRANSPORTATION (ICECTT 2019), 2019, : 154 - 158
  • [10] A robust visual odometry based on RGB-D camera in dynamic indoor environments
    Zhang, Fangfang
    Li, Qiyan
    Wang, Tingting
    Ma, Tianlei
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2021, 32 (04)