Effective Background Model-Based RGB-D Dense Visual Odometry in a Dynamic Environment

被引:126
|
作者
Kim, Deok-Hwa [1 ]
Kim, Jong-Hwan [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Sch Elect Engn, Daejeon 34141, South Korea
基金
新加坡国家研究基金会;
关键词
Background subtraction; dynamic environment; simultaneous localization and mapping (SLAM); visual odometry; visual tracking;
D O I
10.1109/TRO.2016.2609395
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
This paper proposes a robust background model-based dense-visual-odometry (BaMVO) algorithm that uses an RGB-D sensor in a dynamic environment. The proposed algorithm estimates the background model represented by the nonparametric model from depth scenes and then estimates the ego-motion of the sensor using the energy-based dense-visual-odometry approach based on the estimated background model in order to consider moving objects. Experimental results demonstrate that the ego-motion is robustly obtained by BaMVO in a dynamic environment.
引用
下载
收藏
页码:1565 / 1573
页数:9
相关论文
共 50 条
  • [21] RGB-D Visual Odometry Combined with Points and Lines
    Lu Junxin
    Fang Zhijun
    Chen Jieyu
    Gao Yongbin
    ACTA OPTICA SINICA, 2021, 41 (04)
  • [22] Improved Visual Odometry System Based on Kinect RGB-D Sensor
    Liu, Shen-Ho
    Hsu, Chen-Chien
    Wang, Wei-Yen
    Chen, Mei-Yung
    Wang, Yin-Tien
    2017 IEEE 7TH INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS - BERLIN (ICCE-BERLIN), 2017, : 29 - 30
  • [23] PLVO: Plane-line-based RGB-D Visual Odometry
    Sun Q.-X.
    Yuan J.
    Zhang X.-B.
    Gao Y.-X.
    Zidonghua Xuebao/Acta Automatica Sinica, 2023, 49 (10): : 2060 - 2072
  • [24] Unsupervised Deep Learning-Based RGB-D Visual Odometry
    Liu, Qiang
    Zhang, Haidong
    Xu, Yiming
    Wang, Li
    APPLIED SCIENCES-BASEL, 2020, 10 (16):
  • [25] Optimization Algorithm of RGB-D SLAM Visual Odometry based on Triangulation
    Dong J.
    Jiang Y.
    Han Z.
    Dong, Jingwei (djw@hrbust.edu.cn), 1600, Totem Publishers Ltd (16): : 438 - 445
  • [26] Adaptive Visual Odometry Using RGB-D Cameras
    Fabian, Joshua R.
    Clayton, Garrett M.
    2014 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM), 2014, : 1533 - 1538
  • [27] Direct RGB-D visual odometry with point features
    Yao, Zhigang
    An, Xu
    Charrier, Christophe
    Rosenberger, Christophe
    INTELLIGENT SERVICE ROBOTICS, 2024, 17 (05) : 1077 - 1089
  • [28] Experimental Evaluation of RGB-D Visual Odometry Methods
    Fang, Zheng
    Zhang, Yu
    INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2015, 12
  • [29] Inverse Depth for Accurate Photometric and Geometric Error Minimisation in RGB-D Dense Visual Odometry
    Gutierrez-Gomez, Daniel
    Mayol-Cuevas, Walterio
    Guerrero, J. J.
    2015 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2015, : 83 - 89
  • [30] Dense Point Cloud Mapping Based on RGB-D Camera in Dynamic Indoor Environment
    Zhang, Fangfang
    Li, Qiyan
    Wang, Tingting
    Liu, Yanhong
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 2412 - 2417