Dense Point Cloud Mapping Based on RGB-D Camera in Dynamic Indoor Environment

被引:0
|
作者
Zhang, Fangfang [1 ]
Li, Qiyan [1 ]
Wang, Tingting [1 ]
Liu, Yanhong [1 ]
机构
[1] Zhengzhou Univ, Sch Elect Engn, Zhengzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
dense point cloud mapping; RGB-D camera; mask truncated signed distance function (MTSDF); dynamic indoor environment;
D O I
10.1109/CAC51589.2020.9327342
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the continuous progress of science and technology, the dense point cloud mapping has gradually replaced the traditional laser mapping and sparse point cloud mapping because of the rich environmental information and depth information. To address the ghosting problem of moving objects in dynamic environment, this paper introduce Mask R-CNN to extract moving objects mask in input frame. After the positioning accuracy are met, we proposes a robust mask truncated signed distance function (MTSDF) model to build dense map in dynamic indoor environment, which identifies the dynamic voxels by the truncation distance of the voxel and reset them, then, the dense point mapping is updated. We respectively tested on TUM RGB-D dataset and our lab, the results show that our method not only achieve better localization precision, but remove the ghosting generated by moving object in dense point cloud mapping well.
引用
收藏
页码:2412 / 2417
页数:6
相关论文
共 50 条
  • [1] RGB-D Mapping for indoor environment
    Wang, Yalong
    Zhang, Qizhi
    Zhou, Yali
    [J]. PROCEEDINGS OF THE 2014 9TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2014, : 1888 - 1892
  • [2] Indoor Scene Point Cloud Registration Algorithm Based on RGB-D Camera Calibration
    Tsai, Chi-Yi
    Huang, Chih-Hung
    [J]. SENSORS, 2017, 17 (08):
  • [3] DUDMap: 3D RGB-D mapping for dense, unstructured, and dynamic environment
    Hasturk, Ozgur
    Erkmen, Aydan M.
    [J]. INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2021, 18 (03):
  • [4] RGB-D camera calibration and trajectory estimation for indoor mapping
    Yang, Liang
    Dryanovski, Ivan
    Valenti, Roberto G.
    Wolberg, George
    Xiao, Jizhong
    [J]. AUTONOMOUS ROBOTS, 2020, 44 (08) : 1485 - 1503
  • [5] RGB-D camera calibration and trajectory estimation for indoor mapping
    Liang Yang
    Ivan Dryanovski
    Roberto G. Valenti
    George Wolberg
    Jizhong Xiao
    [J]. Autonomous Robots, 2020, 44 : 1485 - 1503
  • [6] A robust visual odometry based on RGB-D camera in dynamic indoor environments
    Zhang, Fangfang
    Li, Qiyan
    Wang, Tingting
    Ma, Tianlei
    [J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 2021, 32 (04)
  • [7] Robust Tracking and Clean Background Dense Reconstruction for RGB-D SLAM in a Dynamic Indoor Environment
    Zhu, Fengbo
    Zheng, Shunyi
    Huang, Xia
    Wang, Xiqi
    [J]. MACHINES, 2022, 10 (10)
  • [8] Building Dense Reflectance Maps of Indoor Environments using an RGB-D Camera
    Krawez, Michael
    Caselitz, Tim
    Buescher, Daniel
    Van Loock, Mark
    Burgard, Wolfram
    [J]. 2018 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2018, : 3210 - 3217
  • [9] RGB-D point cloud registration via infrared and color camera
    Teng Wan
    Shaoyi Du
    Yiting Xu
    Guanglin Xu
    Zuoyong Li
    Badong Chen
    Yue Gao
    [J]. Multimedia Tools and Applications, 2019, 78 : 33223 - 33246
  • [10] RGB-D point cloud registration via infrared and color camera
    Wan, Teng
    Du, Shaoyi
    Xu, Yiting
    Xu, Guanglin
    Li, Zuoyong
    Chen, Badong
    Gao, Yue
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (23) : 33223 - 33246