Dynamic RGB-D Visual Odometry

被引:0
|
作者
Yang, Dongsheng [1 ]
Bi, Shusheng [1 ]
Cai, Yueri [1 ]
Zheng, Jingxiang [1 ]
Yuan, Chang [1 ]
机构
[1] Beihang Univ, Robot Inst, Beijing, Peoples R China
关键词
visual odometry; dynamic envrionments; RGB-D camera; accuracy;
D O I
暂无
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
The aim of this paper is to estimate the ego-motion of an RGB-D camera in dynamic environments. A semi-direct motion estimation pipeline is modified for the RGB-D camera. In order to avoid the impact of dynamic objects, a new mapping method based on scoring mechanism is proposed, which can effectively remove feature points on dynamic objects and results a map contains only static points. The method is evaluated not only with the TUM RGB-D benchmark but also using an Asus Xtion Pro Live camera in a dynamic office environment. The experimental results show that our method has higher accuracy in dynamic environments and has considerable accuracy in static environments. In some high dynamic scenes, the accuracy of our method is more than 7 times higher than other RGB-D visual odometry algorithms.
引用
收藏
页码:941 / 946
页数:6
相关论文
共 50 条
  • [41] Autonomous Quadrotor Flight Using Onboard RGB-D Visual Odometry
    Valenti, Roberto G.
    Dryanovski, Ivan
    Jaramillo, Carlos
    Strom, Daniel Perea
    Xiao, Jizhong
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2014, : 5233 - 5238
  • [42] Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera
    Huang, Albert S.
    Bachrach, Abraham
    Henry, Peter
    Krainin, Michael
    Maturana, Daniel
    Fox, Dieter
    Roy, Nicholas
    [J]. ROBOTICS RESEARCH, ISRR, 2017, 100
  • [43] Visual Odometry Using Non-Overlapping RGB-D Cameras
    Xu, Hang
    Guo, Yanning
    Feng, Zhen
    Chen, Zhen
    [J]. 2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 843 - 848
  • [44] Graph-Based Visual SLAM and Visual Odometry Using an RGB-D Camera
    Kluessendorff, Jan Helge
    Hartmann, Jan
    Forouher, Dariush
    Maehle, Erik
    [J]. 2013 9TH INTERNATIONAL WORKSHOP ON ROBOT MOTION AND CONTROL (ROMOCO), 2013, : 288 - 293
  • [45] SP-VO: RGB-D Visual Odometry Using Static Parts Toward Dynamic Environments
    Jeon, Hyeongjun
    Oh, Junghyun
    [J]. IEEE ACCESS, 2023, 11 : 47202 - 47211
  • [46] RGB-D DSO: Direct Sparse Odometry With RGB-D Cameras for Indoor Scenes
    Yuan, Zikang
    Cheng, Ken
    Tang, Jinhui
    Yang, Xin
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 4092 - 4101
  • [47] Real-Time Visual Odometry from Dense RGB-D Images
    Steinbruecker, Frank
    Sturm, Juergen
    Cremers, Daniel
    [J]. 2011 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCV WORKSHOPS), 2011,
  • [48] Tracking Spatially Distributed Features in KLT Algorithms for RGB-D Visual Odometry
    da Silva, Bruno Marques F.
    Correia, Luiz Felipe M.
    Bezerra, Kallil de A.
    Goncalves, Luiz Marcos G.
    [J]. 2017 WORKSHOP OF COMPUTER VISION (WVC), 2017, : 67 - 72
  • [49] Semi-Direct Visual Odometry and Mapping System with RGB-D Camera
    Zhong X.
    Luo X.
    Zhao J.
    Huang Y.
    [J]. Journal of Beijing Institute of Technology (English Edition), 2019, 28 (01): : 83 - 93
  • [50] RGB-D Odometry for Autonomous Lawn Mowing
    Ochman, Marcin
    Skoczen, Magda
    Krata, Damian
    Panek, Marcin
    Spyra, Krystian
    Pawlowski, Andrzej
    [J]. ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING (ICAISC 2021), PT II, 2021, 12855 : 81 - 90