Dynamic RGB-D Visual Odometry

被引:0
|
作者
Yang, Dongsheng [1 ]
Bi, Shusheng [1 ]
Cai, Yueri [1 ]
Zheng, Jingxiang [1 ]
Yuan, Chang [1 ]
机构
[1] Beihang Univ, Robot Inst, Beijing, Peoples R China
关键词
visual odometry; dynamic envrionments; RGB-D camera; accuracy;
D O I
暂无
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
The aim of this paper is to estimate the ego-motion of an RGB-D camera in dynamic environments. A semi-direct motion estimation pipeline is modified for the RGB-D camera. In order to avoid the impact of dynamic objects, a new mapping method based on scoring mechanism is proposed, which can effectively remove feature points on dynamic objects and results a map contains only static points. The method is evaluated not only with the TUM RGB-D benchmark but also using an Asus Xtion Pro Live camera in a dynamic office environment. The experimental results show that our method has higher accuracy in dynamic environments and has considerable accuracy in static environments. In some high dynamic scenes, the accuracy of our method is more than 7 times higher than other RGB-D visual odometry algorithms.
引用
收藏
页码:941 / 946
页数:6
相关论文
共 50 条
  • [31] Improved Visual Odometry System Based on Kinect RGB-D Sensor
    Liu, Shen-Ho
    Hsu, Chen-Chien
    Wang, Wei-Yen
    Chen, Mei-Yung
    Wang, Yin-Tien
    [J]. 2017 IEEE 7TH INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS - BERLIN (ICCE-BERLIN), 2017, : 29 - 30
  • [32] Evaluation of Recent Approaches to Visual Odometry from RGB-D Images
    Alexandrov, Sergey
    Herpers, Rainer
    [J]. ROBOCUP 2013: ROBOT WORLD CUP XVII, 2014, 8371 : 444 - 455
  • [33] ADAPTIVE RGB-D VISUAL ODOMETRY FOR MOBILE ROBOTS: AN EXPERIMENTAL STUDY
    Anderson, J. Wesley
    Fabian, Joshua R.
    Clayton, Garrett M.
    [J]. PROCEEDINGS OF THE ASME 8TH ANNUAL DYNAMIC SYSTEMS AND CONTROL CONFERENCE, 2015, VOL 3, 2016,
  • [34] Unsupervised Deep Learning-Based RGB-D Visual Odometry
    Liu, Qiang
    Zhang, Haidong
    Xu, Yiming
    Wang, Li
    [J]. APPLIED SCIENCES-BASEL, 2020, 10 (16):
  • [35] Robust RGB-D Visual Odometry Using Point and Line Features
    Sun, Chao
    Qiao, Nianzu
    Ge, Wei
    Sun, Jia
    [J]. 2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 3826 - 3831
  • [36] Autonomous Quadrotor Flight Using Onboard RGB-D Visual Odometry
    Valenti, Roberto G.
    Dryanovski, Ivan
    Jaramillo, Carlos
    Strom, Daniel Perea
    Xiao, Jizhong
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2014, : 5233 - 5238
  • [37] Continuous Direct Sparse Visual Odometry from RGB-D Images
    Ghaffari, Maani
    Clark, William
    Bloch, Anthony
    Eustice, Ryan M.
    Grizzle, Jessy W.
    [J]. ROBOTICS: SCIENCE AND SYSTEMS XV, 2019,
  • [38] RGB-D visual odometry by constructing and matching features at superpixel level
    Yang, Meiyi
    Xiong, Junlin
    Li, Youfu
    [J]. ROBOTICA, 2024, : 2619 - 2634
  • [39] Optimization Algorithm of RGB-D SLAM Visual Odometry based on Triangulation
    Dong J.
    Jiang Y.
    Han Z.
    [J]. Dong, Jingwei (djw@hrbust.edu.cn), 1600, Totem Publishers Ltd (16): : 438 - 445
  • [40] RGB-D SLAM Combining Visual Odometry and Extended Information Filter
    Zhang, Heng
    Liu, Yanli
    Tan, Jindong
    Xiong, Naixue
    [J]. SENSORS, 2015, 15 (08) : 18742 - 18766