The Lugiato-Lefever Equation with Nonlinear Damping Caused by Two Photon Absorption

被引:1
|
作者
Gaertner, Janina [1 ]
Mandel, Rainer [1 ]
Reichel, Wolfgang [1 ]
机构
[1] Karlsruhe Inst Technol, Inst Anal, Englerstr 2, D-76131 Karlsruhe, Germany
关键词
Lugiato-Lefever equation; Bifurcation; Continuation; Solitons; Frequency combs; Nonlinear damping; Two photon absorption;
D O I
10.1007/s10884-021-09943-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we investigate the effect of nonlinear damping on the Lugiato-Lefever equation i partial derivative(t)a = -(i - zeta)a - da(xx) - (1 + i kappa)|a|(2)a + i f on the torus or the real line. For the case of the torus it is shown that for small nonlinear damping kappa > 0 stationary spatially periodic solutions exist on branches that bifurcate from constant solutions whereas all nonconstant stationary 2 pi-periodic solutions disappear when the damping parameter kappa exceeds a critical value. These results apply both for normal (d < 0) and anomalous (d > 0) dispersion. For the case of the real line we show by the Implicit Function Theorem that for small nonlinear damping kappa > 0 and large detuning zeta >> 1 and large forcing f >> 1 strongly localized, bright solitary stationary solutions exist in the case of anomalous dispersion d > 0. These results are achieved by using techniques from bifurcation and continuation theory and by proving a convergence result for solutions of the time-dependent Lugiato-Lefever equation.
引用
收藏
页码:2201 / 2227
页数:27
相关论文
共 50 条
  • [31] A PRIORI BOUNDS AND GLOBAL BIFURCATION RESULTS FOR FREQUENCY COMBS MODELED BY THE LUGIATO-LEFEVER EQUATION
    Mandel, Rainer
    Reichel, Wolfgang
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2017, 77 (01) : 315 - 345
  • [32] Interaction of solitons and the formation of bound states in the generalized Lugiato-Lefever equation
    Parra-Rivas, Pedro
    Gomila, Damia
    Colet, Pere
    Gelens, Lendert
    EUROPEAN PHYSICAL JOURNAL D, 2017, 71 (07):
  • [33] Nonlinear modulational dynamics of spectrally stable Lugiato-Lefever periodic waves
    Haragus, Mariana
    Johnson, Mathew A.
    Perkins, Wesley R.
    de Rijk, Bjoern
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2023, 40 (04): : 769 - 802
  • [34] Chirped-pulsed Kerr solitons in the Lugiato-Lefever equation with spectral filtering
    Dong, Xue
    Spiess, Christopher
    Bucklew, Victor G.
    Renninger, William H.
    PHYSICAL REVIEW RESEARCH, 2021, 3 (03):
  • [35] Stability and dynamics of microring combs: elliptic function solutions of the Lugiato-Lefever equation
    Sun, Chang
    Askham, Travis
    Kutz, J. Nathan
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2018, 35 (06) : 1341 - 1353
  • [36] The linear Lugiato-Lefever equation with forcing and nonzero periodic or nonperiodic boundary conditions
    Wimmergren, Joseph
    Mantzavinos, Dionyssios
    INVOLVE, A JOURNAL OF MATHEMATICS, 2023, 16 (05): : 783 - 808
  • [37] Existence of global solutions and global attractor for the third order Lugiato-Lefever equation on T
    Miyaji, Tomoyuki
    Tsutsumi, Yoshio
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2017, 34 (07): : 1707 - 1725
  • [38] From the Lugiato-Lefever equation to microresonator-based soliton Kerr frequency combs
    Lugiato, L. A.
    Prati, F.
    Gorodetsky, M. L.
    Kippenberg, T. J.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2018, 376 (2135):
  • [39] Spatiotemporal chaos and two-dimensional dissipative rogue waves in Lugiato-Lefever model
    Panajotov, Krassimir
    Clerc, Marcel G.
    Tlidi, Mustapha
    EUROPEAN PHYSICAL JOURNAL D, 2017, 71 (07):
  • [40] Dynamics of localized and patterned structures in the Lugiato-Lefever equation determine the stability and shape of optical frequency combs
    Parra-Rivas, P.
    Gomila, D.
    Matias, M. A.
    Coen, S.
    Gelens, L.
    PHYSICAL REVIEW A, 2014, 89 (04):