The linear Lugiato-Lefever equation with forcing and nonzero periodic or nonperiodic boundary conditions

被引:0
|
作者
Wimmergren, Joseph [1 ]
Mantzavinos, Dionyssios [2 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[2] Univ Kansas, Dept Math, Lawrence, KS USA
来源
INVOLVE, A JOURNAL OF MATHEMATICS | 2023年 / 16卷 / 05期
基金
美国国家科学基金会;
关键词
linear Lugiato-Lefever equation; linear Schrodinger equation; finite interval; initial-boundary value problem; periodic problem; nonzero boundary conditions; unified transform; Fokas method; NONLINEAR SCHRODINGER-EQUATION; TRANSFORM METHOD; FREQUENCY COMBS; EVOLUTION-EQUATIONS; DYNAMICS; WAVES;
D O I
10.2140/involve.2023.16.783
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the linear Lugiato-Lefever equation formulated on a finite interval with nonzero boundary conditions. In particular, using the unified transform of Fokas, we obtain explicit solution formulae both for the general nonperiodic initial-boundary value problem and for the periodic Cauchy problem. These novel solution formulae involve integrals, as opposed to the infinite series associated with traditional solution techniques, and hence they have analytical as well as computational advantages. Importantly, as the linear Lugiato-Lefever can be related to the linear Schrodinger equation via a simple transformation, our results are directly applicable also to the linear Schrodinger equation posed on a finite interval with nonzero boundary conditions.
引用
收藏
页码:783 / 808
页数:29
相关论文
共 50 条
  • [1] INSTABILITIES OF PERIODIC WAVES FOR THE LUGIATO-LEFEVER EQUATION
    Delcey, Lucie
    Haragus, Mariana
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 63 (04): : 377 - 399
  • [2] Theory and applications of the Lugiato-Lefever Equation
    Chembo, Yanne K.
    Gomila, Damia
    Tlidi, Mustapha
    Menyuk, Curtis R.
    EUROPEAN PHYSICAL JOURNAL D, 2017, 71 (11):
  • [3] Periodic waves of the Lugiato-Lefever equation at the onset of Turing instability
    Delcey, Lucie
    Haragus, Mariana
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2018, 376 (2117):
  • [4] PINNING IN THE EXTENDED LUGIATO-LEFEVER EQUATION
    Bengel, Lukas
    Pelinovsky, Dmitry
    Reichel, Wolfgang
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2024, 56 (03) : 3679 - 3702
  • [5] Bifurcation structure of periodic patterns in the Lugiato-Lefever equation with anomalous dispersion
    Parra-Rivas, P.
    Gomila, D.
    Gelens, L.
    Knobloch, E.
    PHYSICAL REVIEW E, 2018, 98 (04)
  • [6] A bifurcation analysis for the Lugiato-Lefever equation
    Cyril Godey
    The European Physical Journal D, 2017, 71
  • [7] A bifurcation analysis for the Lugiato-Lefever equation
    Godey, Cyril
    EUROPEAN PHYSICAL JOURNAL D, 2017, 71 (05):
  • [8] Theory and applications of the Lugiato-Lefever Equation
    Yanne K. Chembo
    Damià Gomila
    Mustapha Tlidi
    Curtis R. Menyuk
    The European Physical Journal D, 2017, 71
  • [9] STABILITY OF A STATIONARY SOLUTION FOR THE LUGIATO-LEFEVER EQUATION
    Miyaji, Tomoyuki
    Ohnishi, Isamu
    Tsutsumi, Yoshio
    TOHOKU MATHEMATICAL JOURNAL, 2011, 63 (04) : 651 - 663
  • [10] Elliptical solitons in the dissipative Lugiato-Lefever equation
    Yulin, A., V
    Andrianov, A., V
    Anashkina, E. A.
    PHYSICAL REVIEW A, 2022, 106 (05)