The linear Lugiato-Lefever equation with forcing and nonzero periodic or nonperiodic boundary conditions

被引:0
|
作者
Wimmergren, Joseph [1 ]
Mantzavinos, Dionyssios [2 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[2] Univ Kansas, Dept Math, Lawrence, KS USA
来源
INVOLVE, A JOURNAL OF MATHEMATICS | 2023年 / 16卷 / 05期
基金
美国国家科学基金会;
关键词
linear Lugiato-Lefever equation; linear Schrodinger equation; finite interval; initial-boundary value problem; periodic problem; nonzero boundary conditions; unified transform; Fokas method; NONLINEAR SCHRODINGER-EQUATION; TRANSFORM METHOD; FREQUENCY COMBS; EVOLUTION-EQUATIONS; DYNAMICS; WAVES;
D O I
10.2140/involve.2023.16.783
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the linear Lugiato-Lefever equation formulated on a finite interval with nonzero boundary conditions. In particular, using the unified transform of Fokas, we obtain explicit solution formulae both for the general nonperiodic initial-boundary value problem and for the periodic Cauchy problem. These novel solution formulae involve integrals, as opposed to the infinite series associated with traditional solution techniques, and hence they have analytical as well as computational advantages. Importantly, as the linear Lugiato-Lefever can be related to the linear Schrodinger equation via a simple transformation, our results are directly applicable also to the linear Schrodinger equation posed on a finite interval with nonzero boundary conditions.
引用
收藏
页码:783 / 808
页数:29
相关论文
共 50 条
  • [21] Asymptotic stability for spectrally stable Lugiato-Lefever solitons in periodic waveguides
    Stanislavova, Milena
    Stefanov, Atanas G.
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (10)
  • [22] Nonlinear Subharmonic Dynamics of Spectrally Stable Lugiato-Lefever Periodic Waves
    Haragus, Mariana
    Johnson, Mathew A.
    Perkins, Wesley R.
    de Rijk, Bjoern
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2024, 405 (10)
  • [23] Interaction of solitons and the formation of bound states in the generalized Lugiato-Lefever equation
    Pedro Parra-Rivas
    Damia Gomila
    Pere Colet
    Lendert Gelens
    The European Physical Journal D, 2017, 71
  • [24] Nonlinear modulational dynamics of spectrally stable Lugiato-Lefever periodic waves
    Haragus, Mariana
    Johnson, Mathew A.
    Perkins, Wesley R.
    de Rijk, Bjoern
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2023, 40 (04): : 769 - 802
  • [25] Characterizing the dynamics of cavity solitons and frequency combs in the Lugiato-Lefever equation.
    Parra-Rivas, P.
    Gomila, D.
    Gelens, L.
    NONLINEAR OPTICS AND ITS APPLICATIONS IV, 2016, 9894
  • [26] Forward-modulated damping estimates and nonlocalized stability of periodic Lugiato-Lefever waves
    Zumbrun, Kevin
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2024, 41 (02): : 497 - 510
  • [27] ON THE GENERATION OF STABLE KERR FREQUENCY COMBS IN THE LUGIATO-LEFEVER MODEL OF PERIODIC OPTICAL WAVEGUIDES
    Hakkaev, Sevdzhan
    Stanislavova, Milena
    Stefanov, Atanas G.
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2019, 79 (02) : 477 - 505
  • [28] Justification of the Lugiato-Lefever Model from a Damped Driven φ4 Equation
    Akbar, Fiki Taufik
    Gunara, Bobby Eka
    Susanto, Hadi
    MATHEMATICS, 2020, 8 (05)
  • [29] The Lugiato-Lefever Equation with Nonlinear Damping Caused by Two Photon Absorption
    Gaertner, Janina
    Mandel, Rainer
    Reichel, Wolfgang
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2022, 34 (03) : 2201 - 2227
  • [30] Diffractive Lugiato-Lefever equation driven by a double tightly focused pump
    dos Santos, Mateus C. P.
    Kumar, Shatrughna
    Cardoso, Wesley B.
    Malomed, Boris A.
    PHYSICAL REVIEW E, 2025, 111 (01)