The Lugiato-Lefever Equation with Nonlinear Damping Caused by Two Photon Absorption

被引:1
|
作者
Gaertner, Janina [1 ]
Mandel, Rainer [1 ]
Reichel, Wolfgang [1 ]
机构
[1] Karlsruhe Inst Technol, Inst Anal, Englerstr 2, D-76131 Karlsruhe, Germany
关键词
Lugiato-Lefever equation; Bifurcation; Continuation; Solitons; Frequency combs; Nonlinear damping; Two photon absorption;
D O I
10.1007/s10884-021-09943-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we investigate the effect of nonlinear damping on the Lugiato-Lefever equation i partial derivative(t)a = -(i - zeta)a - da(xx) - (1 + i kappa)|a|(2)a + i f on the torus or the real line. For the case of the torus it is shown that for small nonlinear damping kappa > 0 stationary spatially periodic solutions exist on branches that bifurcate from constant solutions whereas all nonconstant stationary 2 pi-periodic solutions disappear when the damping parameter kappa exceeds a critical value. These results apply both for normal (d < 0) and anomalous (d > 0) dispersion. For the case of the real line we show by the Implicit Function Theorem that for small nonlinear damping kappa > 0 and large detuning zeta >> 1 and large forcing f >> 1 strongly localized, bright solitary stationary solutions exist in the case of anomalous dispersion d > 0. These results are achieved by using techniques from bifurcation and continuation theory and by proving a convergence result for solutions of the time-dependent Lugiato-Lefever equation.
引用
收藏
页码:2201 / 2227
页数:27
相关论文
共 50 条
  • [1] The Lugiato–Lefever Equation with Nonlinear Damping Caused by Two Photon Absorption
    Janina Gärtner
    Rainer Mandel
    Wolfgang Reichel
    Journal of Dynamics and Differential Equations, 2022, 34 : 2201 - 2227
  • [2] Theory and applications of the Lugiato-Lefever Equation
    Chembo, Yanne K.
    Gomila, Damia
    Tlidi, Mustapha
    Menyuk, Curtis R.
    EUROPEAN PHYSICAL JOURNAL D, 2017, 71 (11):
  • [3] PINNING IN THE EXTENDED LUGIATO-LEFEVER EQUATION
    Bengel, Lukas
    Pelinovsky, Dmitry
    Reichel, Wolfgang
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2024, 56 (03) : 3679 - 3702
  • [4] A bifurcation analysis for the Lugiato-Lefever equation
    Cyril Godey
    The European Physical Journal D, 2017, 71
  • [5] A bifurcation analysis for the Lugiato-Lefever equation
    Godey, Cyril
    EUROPEAN PHYSICAL JOURNAL D, 2017, 71 (05):
  • [6] Theory and applications of the Lugiato-Lefever Equation
    Yanne K. Chembo
    Damià Gomila
    Mustapha Tlidi
    Curtis R. Menyuk
    The European Physical Journal D, 2017, 71
  • [7] STABILITY OF A STATIONARY SOLUTION FOR THE LUGIATO-LEFEVER EQUATION
    Miyaji, Tomoyuki
    Ohnishi, Isamu
    Tsutsumi, Yoshio
    TOHOKU MATHEMATICAL JOURNAL, 2011, 63 (04) : 651 - 663
  • [8] INSTABILITIES OF PERIODIC WAVES FOR THE LUGIATO-LEFEVER EQUATION
    Delcey, Lucie
    Haragus, Mariana
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 63 (04): : 377 - 399
  • [9] Elliptical solitons in the dissipative Lugiato-Lefever equation
    Yulin, A., V
    Andrianov, A., V
    Anashkina, E. A.
    PHYSICAL REVIEW A, 2022, 106 (05)
  • [10] Dark solitons in the Lugiato-Lefever equation with normal dispersion
    Parra-Rivas, P.
    Knobloch, E.
    Gomila, D.
    Gelens, L.
    PHYSICAL REVIEW A, 2016, 93 (06)