The Lugiato-Lefever Equation with Nonlinear Damping Caused by Two Photon Absorption

被引:1
|
作者
Gaertner, Janina [1 ]
Mandel, Rainer [1 ]
Reichel, Wolfgang [1 ]
机构
[1] Karlsruhe Inst Technol, Inst Anal, Englerstr 2, D-76131 Karlsruhe, Germany
关键词
Lugiato-Lefever equation; Bifurcation; Continuation; Solitons; Frequency combs; Nonlinear damping; Two photon absorption;
D O I
10.1007/s10884-021-09943-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we investigate the effect of nonlinear damping on the Lugiato-Lefever equation i partial derivative(t)a = -(i - zeta)a - da(xx) - (1 + i kappa)|a|(2)a + i f on the torus or the real line. For the case of the torus it is shown that for small nonlinear damping kappa > 0 stationary spatially periodic solutions exist on branches that bifurcate from constant solutions whereas all nonconstant stationary 2 pi-periodic solutions disappear when the damping parameter kappa exceeds a critical value. These results apply both for normal (d < 0) and anomalous (d > 0) dispersion. For the case of the real line we show by the Implicit Function Theorem that for small nonlinear damping kappa > 0 and large detuning zeta >> 1 and large forcing f >> 1 strongly localized, bright solitary stationary solutions exist in the case of anomalous dispersion d > 0. These results are achieved by using techniques from bifurcation and continuation theory and by proving a convergence result for solutions of the time-dependent Lugiato-Lefever equation.
引用
收藏
页码:2201 / 2227
页数:27
相关论文
共 50 条
  • [41] Modeling Kerr frequency combs using the Lugiato-Lefever equation: a characterization of the multistable landscape
    Parra-Rivas, P.
    Gomila, D.
    Matias, M. A.
    Leo, F.
    Coen, S.
    Gelens, L.
    NONLINEAR OPTICS AND ITS APPLICATIONS VIII; AND QUANTUM OPTICS III, 2014, 9136
  • [42] STABILITY OF STATIONARY SOLUTION FOR THE LUGIATO-LEFEVER EQUATION (vol 63, pg 651, 2011)
    Miyaji, Tomoyuki
    Ohnishi, Isamu
    Tsutsumi, Yoshio
    TOHOKU MATHEMATICAL JOURNAL, 2020, 72 (03) : 487 - 492
  • [43] Controllable rogue waves in Lugiato-Lefever equation with higher-order nonlinearities and varying coefficients
    Kol, Guy Richard
    OPTICAL AND QUANTUM ELECTRONICS, 2016, 48 (09)
  • [44] STEADY-STATE MODE INTERACTIONS OF RADIALLY SYMMETRIC MODES FOR THE LUGIATO-LEFEVER EQUATION ON A DISK
    Miyaji, Tomoyuki
    Tsutsumi, Yoshio
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2018, 17 (04) : 1633 - 1650
  • [45] Frequency comb generation beyond the Lugiato-Lefever equation: multi-stability and super cavity solitons
    Hansson, Tobias
    Wabnitz, Stefan
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2015, 32 (07) : 1259 - 1266
  • [46] Spatiotemporal chaos and two-dimensional dissipative rogue waves in Lugiato-Lefever model
    Krassimir Panajotov
    Marcel G. Clerc
    Mustapha Tlidi
    The European Physical Journal D, 2017, 71
  • [47] Global continua of solutions to the Lugiato-Lefever model for frequency combs obtained by two-mode pumping
    Gasmi, Elias
    Jahnke, Tobias
    Kirn, Michael
    Reichel, Wolfgang
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (04):
  • [48] Experimental Observation of Front Propagation in Lugiato-Lefever Equation in a Negative Diffractive Regime and Inhomogeneous Kerr Cavity
    Odent, V.
    Tlidi, M.
    Clerc, M. G.
    Louvergneaux, E.
    NONLINEAR DYNAMICS: MATERIALS, THEORY AND EXPERIMENTS, 2016, 173 : 71 - 85
  • [49] Stability analysis of numerically exact time-periodic breathers in the Lugiato-Lefever equation: Discrete vs continuum
    Johansson, Magnus
    Lobanov, Valery E.
    Skryabin, Dmitry, V
    PHYSICAL REVIEW RESEARCH, 2019, 1 (03):
  • [50] Chirped optical pulses for generalized longitudinal Lugiato Lefever: cubic nonlinear Schrodinger equation
    Aziz, Noor
    Seadawy, Aly R.
    Raza, Umar
    Ali, Kashif
    Rizvi, Syed T. R.
    OPTICAL AND QUANTUM ELECTRONICS, 2022, 54 (10)