The Lugiato-Lefever Equation with Nonlinear Damping Caused by Two Photon Absorption

被引:1
|
作者
Gaertner, Janina [1 ]
Mandel, Rainer [1 ]
Reichel, Wolfgang [1 ]
机构
[1] Karlsruhe Inst Technol, Inst Anal, Englerstr 2, D-76131 Karlsruhe, Germany
关键词
Lugiato-Lefever equation; Bifurcation; Continuation; Solitons; Frequency combs; Nonlinear damping; Two photon absorption;
D O I
10.1007/s10884-021-09943-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we investigate the effect of nonlinear damping on the Lugiato-Lefever equation i partial derivative(t)a = -(i - zeta)a - da(xx) - (1 + i kappa)|a|(2)a + i f on the torus or the real line. For the case of the torus it is shown that for small nonlinear damping kappa > 0 stationary spatially periodic solutions exist on branches that bifurcate from constant solutions whereas all nonconstant stationary 2 pi-periodic solutions disappear when the damping parameter kappa exceeds a critical value. These results apply both for normal (d < 0) and anomalous (d > 0) dispersion. For the case of the real line we show by the Implicit Function Theorem that for small nonlinear damping kappa > 0 and large detuning zeta >> 1 and large forcing f >> 1 strongly localized, bright solitary stationary solutions exist in the case of anomalous dispersion d > 0. These results are achieved by using techniques from bifurcation and continuation theory and by proving a convergence result for solutions of the time-dependent Lugiato-Lefever equation.
引用
收藏
页码:2201 / 2227
页数:27
相关论文
共 50 条
  • [21] Bifurcation structure of localized states in the Lugiato-Lefever equation with anomalous dispersion
    Parra-Rivas, P.
    Gomila, D.
    Gelens, L.
    Knobloch, E.
    PHYSICAL REVIEW E, 2018, 97 (04)
  • [22] pyLLE: A Fast and User Friendly Lugiato-Lefever Equation Solver
    Moille, Gregory
    Li, Qing
    Lu, Xiyuan
    Srinivasan, Kartik
    JOURNAL OF RESEARCH OF THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, 2019, 124
  • [23] Coupled Lugiato-Lefever equation for nonlinear frequency comb generation at an avoided crossing of a microresonator
    Giuseppe D’Aguanno
    Curtis R. Menyuk
    The European Physical Journal D, 2017, 71
  • [24] Coupled Lugiato-Lefever equation for nonlinear frequency comb generation at an avoided crossing of a microresonator
    D'Aguanno, Giuseppe
    Menyuk, Curtis R.
    EUROPEAN PHYSICAL JOURNAL D, 2017, 71 (03):
  • [25] Interaction of solitons and the formation of bound states in the generalized Lugiato-Lefever equation
    Pedro Parra-Rivas
    Damia Gomila
    Pere Colet
    Lendert Gelens
    The European Physical Journal D, 2017, 71
  • [26] Forward-modulated damping estimates and nonlocalized stability of periodic Lugiato-Lefever waves
    Zumbrun, Kevin
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2024, 41 (02): : 497 - 510
  • [27] Nonlinear Subharmonic Dynamics of Spectrally Stable Lugiato-Lefever Periodic Waves
    Haragus, Mariana
    Johnson, Mathew A.
    Perkins, Wesley R.
    de Rijk, Bjoern
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2024, 405 (10)
  • [28] Characterizing the dynamics of cavity solitons and frequency combs in the Lugiato-Lefever equation.
    Parra-Rivas, P.
    Gomila, D.
    Gelens, L.
    NONLINEAR OPTICS AND ITS APPLICATIONS IV, 2016, 9894
  • [29] Justification of the Lugiato-Lefever Model from a Damped Driven φ4 Equation
    Akbar, Fiki Taufik
    Gunara, Bobby Eka
    Susanto, Hadi
    MATHEMATICS, 2020, 8 (05)
  • [30] Diffractive Lugiato-Lefever equation driven by a double tightly focused pump
    dos Santos, Mateus C. P.
    Kumar, Shatrughna
    Cardoso, Wesley B.
    Malomed, Boris A.
    PHYSICAL REVIEW E, 2025, 111 (01)