The linear Lugiato-Lefever equation with forcing and nonzero periodic or nonperiodic boundary conditions

被引:0
|
作者
Wimmergren, Joseph [1 ]
Mantzavinos, Dionyssios [2 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[2] Univ Kansas, Dept Math, Lawrence, KS USA
来源
INVOLVE, A JOURNAL OF MATHEMATICS | 2023年 / 16卷 / 05期
基金
美国国家科学基金会;
关键词
linear Lugiato-Lefever equation; linear Schrodinger equation; finite interval; initial-boundary value problem; periodic problem; nonzero boundary conditions; unified transform; Fokas method; NONLINEAR SCHRODINGER-EQUATION; TRANSFORM METHOD; FREQUENCY COMBS; EVOLUTION-EQUATIONS; DYNAMICS; WAVES;
D O I
10.2140/involve.2023.16.783
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the linear Lugiato-Lefever equation formulated on a finite interval with nonzero boundary conditions. In particular, using the unified transform of Fokas, we obtain explicit solution formulae both for the general nonperiodic initial-boundary value problem and for the periodic Cauchy problem. These novel solution formulae involve integrals, as opposed to the infinite series associated with traditional solution techniques, and hence they have analytical as well as computational advantages. Importantly, as the linear Lugiato-Lefever can be related to the linear Schrodinger equation via a simple transformation, our results are directly applicable also to the linear Schrodinger equation posed on a finite interval with nonzero boundary conditions.
引用
收藏
页码:783 / 808
页数:29
相关论文
共 50 条
  • [31] A PRIORI BOUNDS AND GLOBAL BIFURCATION RESULTS FOR FREQUENCY COMBS MODELED BY THE LUGIATO-LEFEVER EQUATION
    Mandel, Rainer
    Reichel, Wolfgang
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2017, 77 (01) : 315 - 345
  • [32] Interaction of solitons and the formation of bound states in the generalized Lugiato-Lefever equation
    Parra-Rivas, Pedro
    Gomila, Damia
    Colet, Pere
    Gelens, Lendert
    EUROPEAN PHYSICAL JOURNAL D, 2017, 71 (07):
  • [33] Chirped-pulsed Kerr solitons in the Lugiato-Lefever equation with spectral filtering
    Dong, Xue
    Spiess, Christopher
    Bucklew, Victor G.
    Renninger, William H.
    PHYSICAL REVIEW RESEARCH, 2021, 3 (03):
  • [34] Zero-dimensional limit of the two-dimensional Lugiato-Lefever equation
    Cardoso, Wesley B.
    Salasnich, Luca
    Malomed, Boris A.
    EUROPEAN PHYSICAL JOURNAL D, 2017, 71 (05):
  • [35] Stability and dynamics of microring combs: elliptic function solutions of the Lugiato-Lefever equation
    Sun, Chang
    Askham, Travis
    Kutz, J. Nathan
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2018, 35 (06) : 1341 - 1353
  • [36] Stability analysis of numerically exact time-periodic breathers in the Lugiato-Lefever equation: Discrete vs continuum
    Johansson, Magnus
    Lobanov, Valery E.
    Skryabin, Dmitry, V
    PHYSICAL REVIEW RESEARCH, 2019, 1 (03):
  • [37] Zero-dimensional limit of the two-dimensional Lugiato-Lefever equation
    Wesley B. Cardoso
    Luca Salasnich
    Boris A. Malomed
    The European Physical Journal D, 2017, 71
  • [38] Existence of global solutions and global attractor for the third order Lugiato-Lefever equation on T
    Miyaji, Tomoyuki
    Tsutsumi, Yoshio
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2017, 34 (07): : 1707 - 1725
  • [39] From the Lugiato-Lefever equation to microresonator-based soliton Kerr frequency combs
    Lugiato, L. A.
    Prati, F.
    Gorodetsky, M. L.
    Kippenberg, T. J.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2018, 376 (2135):
  • [40] Dynamics of localized and patterned structures in the Lugiato-Lefever equation determine the stability and shape of optical frequency combs
    Parra-Rivas, P.
    Gomila, D.
    Matias, M. A.
    Coen, S.
    Gelens, L.
    PHYSICAL REVIEW A, 2014, 89 (04):