The time-dependent Schrodinger equation in three dimensions under geometric constraints

被引:10
|
作者
Petreska, Irina [1 ]
de Castro, Antonio S. M. [2 ]
Sandev, Trifce [1 ,3 ,4 ]
Lenzi, Ervin K. [2 ]
机构
[1] Ss Cyril & Methodius Univ, Fac Nat Sci & Math, Inst Phys, Arhimedova 3, Skopje 1000, North Macedonia
[2] Univ Estadual Ponta Grossa, Dept Fis, Av Carlos Cavalcanti 4748, BR-84030900 Ponta Grossa, PR, Brazil
[3] Radiat Safety Directorate, Partizanski Odredi 143,POB 22, Skopje 1020, North Macedonia
[4] Macedonian Acad Sci & Arts, Res Ctr Comp Sci & Informat Technol, Bul Krste Misirkov 2, Skopje 1000, North Macedonia
关键词
DIFFUSION;
D O I
10.1063/1.5079226
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a quantum motion governed by the time-dependent Schrodinger equation on a three dimensional comb structure. We derive the corresponding fractional Schrodinger equations for the reduced probability density functions by projection of the three dimensional comb dynamics in the two- and one-dimensional configuration space. This represents another physical example of a system where fractional calculus emerges. We give closed-form solutions of the corresponding equations for the reduced probability density functions in terms of the Fox H-function, by using the Green's function approach. Published under license by AIP Publishing.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Generalized time-dependent Schrodinger equation in two dimensions under constraints
    Sandev, Trifce
    Petreska, Irina
    Lenzi, Ervin K.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (01)
  • [2] Solving the time-dependent Schrodinger equation in five dimensions
    Muller, HG
    [J]. MULTIPHOTON PROCESSES, 2000, 525 : 257 - 264
  • [3] Numerical solutions of the time-dependent Schrodinger equation in two dimensions
    van Dijk, Wytse
    Vanderwoerd, Trevor
    Prins, Sjirk-Jan
    [J]. PHYSICAL REVIEW E, 2017, 95 (02)
  • [4] EXACT SOLUTION TO THE TIME-DEPENDENT SCHRODINGER-EQUATION IN 2 DIMENSIONS
    KAUSHAL, RS
    [J]. PHYSICAL REVIEW A, 1992, 46 (05): : 2941 - 2944
  • [5] A TIME-DEPENDENT SCHRODINGER-EQUATION
    KRANOLD, HU
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1983, 24 (09) : 2345 - 2347
  • [6] On the derivation of the time-dependent equation of Schrodinger
    Briggs, JS
    Rost, JM
    [J]. FOUNDATIONS OF PHYSICS, 2001, 31 (04) : 693 - 712
  • [7] On the time-dependent solutions of the Schrodinger equation
    Palma, Alejandro
    Pedraza, I.
    [J]. TOPICS IN THE THEORY OF CHEMICAL AND PHYSICAL SYSTEMS, 2007, 16 : 147 - +
  • [8] Exact solutions to three-dimensional time-dependent Schrodinger equation
    Chand, Fakir
    Mishra, S. C.
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2007, 68 (06): : 891 - 900
  • [9] On the Numerical Solution of the Time-Dependent Schrodinger Equation with Time-Dependent Potentials
    Rizea, M.
    [J]. NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, 2008, 1048 : 1011 - 1015
  • [10] The time-dependent Schrodinger equation in non-integer dimensions for constrained quantum motion
    Petreska, Irina
    de Castro, Antonio S. M.
    Sandev, Trifce
    Lenzi, Ervin K.
    [J]. PHYSICS LETTERS A, 2020, 384 (34)