Numerical solutions of the time-dependent Schrodinger equation in two dimensions

被引:5
|
作者
van Dijk, Wytse [1 ,2 ]
Vanderwoerd, Trevor [1 ]
Prins, Sjirk-Jan [1 ]
机构
[1] Redeemer Univ Coll, Dept Phys, Ancaster, ON L9K 1J4, Canada
[2] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
PROPAGATION; SOLVERS; SCHEME;
D O I
10.1103/PhysRevE.95.023310
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The generalized Crank-Nicolson method is employed to obtain numerical solutions of the two-dimensional time-dependent Schrodinger equation. An adapted alternating-direction implicit method is used, along with a high-order finite-difference scheme in space. Extra care has to be taken for the needed precision of the time development. The method permits a systematic study of the accuracy and efficiency in terms of powers of the spatial and temporal step sizes. To illustrate its utility the method is applied to several two-dimensional systems.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] On numerical solutions of the time-dependent Schrodinger equation
    van Dijk, Wytse
    [J]. AMERICAN JOURNAL OF PHYSICS, 2023, 91 (10) : 826 - 839
  • [2] Accurate numerical solutions of the time-dependent Schrodinger equation
    van Dijk, W.
    Toyama, F. M.
    [J]. PHYSICAL REVIEW E, 2007, 75 (03):
  • [3] A Study of Numerical Solutions of the Time-Dependent Schrodinger Equation
    Amin, N. A. M.
    Wong, B. R.
    [J]. 22ND NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM22), 2015, 1682
  • [4] Efficiency and accuracy of numerical solutions to the time-dependent Schrodinger equation
    van Dijk, W.
    Brown, J.
    Spyksma, K.
    [J]. PHYSICAL REVIEW E, 2011, 84 (05):
  • [5] Efficient explicit numerical solutions of the time-dependent Schrodinger equation
    van Dijk, W.
    [J]. PHYSICAL REVIEW E, 2022, 105 (02)
  • [6] On the time-dependent solutions of the Schrodinger equation
    Palma, Alejandro
    Pedraza, I.
    [J]. TOPICS IN THE THEORY OF CHEMICAL AND PHYSICAL SYSTEMS, 2007, 16 : 147 - +
  • [7] Generalized time-dependent Schrodinger equation in two dimensions under constraints
    Sandev, Trifce
    Petreska, Irina
    Lenzi, Ervin K.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (01)
  • [8] Numerical time-dependent solutions of the Schrodinger equation with piecewise continuous potentials
    van Dijk, Wytse
    [J]. PHYSICAL REVIEW E, 2016, 93 (06)
  • [9] Numerical solutions of the Schrodinger equation with source terms or time-dependent potentials
    van Dijk, W.
    Toyama, F. M.
    [J]. PHYSICAL REVIEW E, 2014, 90 (06):
  • [10] NUMERICAL SOLUTION OF TIME-DEPENDENT SCHRODINGER EQUATION
    WEINER, JH
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 1972, 4 (01) : 10 - 10