The time-dependent Schrodinger equation in non-integer dimensions for constrained quantum motion

被引:2
|
作者
Petreska, Irina [1 ]
de Castro, Antonio S. M. [2 ]
Sandev, Trifce [1 ,3 ,4 ]
Lenzi, Ervin K. [2 ]
机构
[1] Ss Cyril & Methodius Univ, Inst Phys, Fac Nat Sci & Math, Arhimedova 3, Skopje 1000, North Macedonia
[2] Univ Estadual Ponta Grossa, Dept Fis, Av Carlos Cavalcanti 4748, BR-84030900 Ponta Grossa, Parana, Brazil
[3] Macedonian Acad Sci & Arts, Res Ctr Comp Sci & Informat Technol, Bul Krste Misirkov 2, Skopje 1000, North Macedonia
[4] Univ Potsdam, Inst Phys & Astron, D-14776 Potsdam, Germany
关键词
Schrodinger equation; Non-integer dimension; Green's function; Bessel functions; Fox H-function; DIELECTRIC SLAB; SCATTERING; EXCITONS; SOLIDS; SPACE;
D O I
10.1016/j.physleta.2020.126866
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a theoretical model, based on a generalized Schrodinger equation, to study the behavior of a constrained quantum system in non-integer, lower than two-dimensional space. The non-integer dimensional space is formed as a product space X x Y, comprising x-coordinate with a Hausdorff measure of dimension alpha(1) = D -1 (1 < D < 2) and y-coordinate with the Lebesgue measure of dimension of length (alpha(2) = 1). Geometric constraints are set at y = 0. Two different approaches to find the Green's function are employed, both giving the same form in terms of the Fox H-function. For D = 2, the solution for two-dimensional quantum motion on a comb is recovered. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Solving the time-dependent Schrodinger equation in five dimensions
    Muller, HG
    [J]. MULTIPHOTON PROCESSES, 2000, 525 : 257 - 264
  • [2] Numerical solutions of the time-dependent Schrodinger equation in two dimensions
    van Dijk, Wytse
    Vanderwoerd, Trevor
    Prins, Sjirk-Jan
    [J]. PHYSICAL REVIEW E, 2017, 95 (02)
  • [3] Hypergroups and Quantum Bessel Processes of Non-integer Dimensions
    Wojciech Matysiak
    [J]. Journal of Theoretical Probability, 2017, 30 : 1677 - 1691
  • [4] Hypergroups and Quantum Bessel Processes of Non-integer Dimensions
    Matysiak, Wojciech
    [J]. JOURNAL OF THEORETICAL PROBABILITY, 2017, 30 (04) : 1677 - 1691
  • [5] The time-dependent Schrodinger equation in three dimensions under geometric constraints
    Petreska, Irina
    de Castro, Antonio S. M.
    Sandev, Trifce
    Lenzi, Ervin K.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (03)
  • [6] Probing non-integer dimensions
    Krapivsky, P. L.
    Redner, S.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2007, 19 (06)
  • [7] Biomaterials in non-integer dimensions
    Young, Iris D.
    Fraser, James S.
    [J]. NATURE CHEMISTRY, 2019, 11 (07) : 599 - 600
  • [8] Generalized time-dependent Schrodinger equation in two dimensions under constraints
    Sandev, Trifce
    Petreska, Irina
    Lenzi, Ervin K.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (01)
  • [9] EXACT SOLUTION TO THE TIME-DEPENDENT SCHRODINGER-EQUATION IN 2 DIMENSIONS
    KAUSHAL, RS
    [J]. PHYSICAL REVIEW A, 1992, 46 (05): : 2941 - 2944
  • [10] Biomaterials in non-integer dimensions
    Iris D. Young
    James S. Fraser
    [J]. Nature Chemistry, 2019, 11 : 599 - 600