Solving the time-dependent Schrodinger equation in five dimensions

被引:0
|
作者
Muller, HG [1 ]
机构
[1] FOM, Inst Atom & Mol Phys, NL-1098 SJ Amsterdam, Netherlands
来源
MULTIPHOTON PROCESSES | 2000年 / 525卷
关键词
D O I
暂无
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This paper discusses ways to simplify the problem of double ionization in a three-dimensional world by linearly polarized light. Symmetry reduces this problem to a five-dimensional one, and if electron spectra are not required, the calculation can be restricted to a small part of the configuration space where at least one of the electrons is close to the nucleus. In this case a mixed length-/ velocity-gauge representation seems optimal, and reduces the size of the problem such that it can be handled by a personal computer.
引用
收藏
页码:257 / 264
页数:8
相关论文
共 50 条
  • [1] A general procedure for solving the time-dependent Schrodinger equation
    Chen, CY
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (31): : 6589 - 6599
  • [2] SOLVING THE TIME-DEPENDENT SCHRODINGER-EQUATION NUMERICALLY
    IITAKA, T
    [J]. PHYSICAL REVIEW E, 1994, 49 (05): : 4684 - 4690
  • [3] Numerical solutions of the time-dependent Schrodinger equation in two dimensions
    van Dijk, Wytse
    Vanderwoerd, Trevor
    Prins, Sjirk-Jan
    [J]. PHYSICAL REVIEW E, 2017, 95 (02)
  • [4] Explicit Euler method for solving the time-dependent Schrodinger equation
    Sturzu, I
    [J]. PHYSICAL REVIEW A, 2001, 64 (05): : 1
  • [5] On the stability of the FDTD method for solving a time-dependent Schrodinger equation
    Dai, WZ
    Li, G
    Nassar, R
    Su, SJ
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2005, 21 (06) : 1140 - 1154
  • [6] Explicit Magnus expansions for solving the time-dependent Schrodinger equation
    Chuluunbaatar, O.
    Derbov, V. L.
    Galtbayar, A.
    Gusev, A. A.
    Kaschiev, M. S.
    Vinitsky, S. I.
    Zhanlav, T.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (29)
  • [7] The time-dependent Schrodinger equation in three dimensions under geometric constraints
    Petreska, Irina
    de Castro, Antonio S. M.
    Sandev, Trifce
    Lenzi, Ervin K.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (03)
  • [8] Generalized time-dependent Schrodinger equation in two dimensions under constraints
    Sandev, Trifce
    Petreska, Irina
    Lenzi, Ervin K.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (01)
  • [9] EXACT SOLUTION TO THE TIME-DEPENDENT SCHRODINGER-EQUATION IN 2 DIMENSIONS
    KAUSHAL, RS
    [J]. PHYSICAL REVIEW A, 1992, 46 (05): : 2941 - 2944
  • [10] STATIONARY APPROACHES FOR SOLVING THE SCHRODINGER-EQUATION WITH TIME-DEPENDENT HAMILTONIANS
    YAO, GH
    WYATT, RE
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1994, 101 (03): : 1904 - 1913