The time-dependent Schrodinger equation in three dimensions under geometric constraints

被引:10
|
作者
Petreska, Irina [1 ]
de Castro, Antonio S. M. [2 ]
Sandev, Trifce [1 ,3 ,4 ]
Lenzi, Ervin K. [2 ]
机构
[1] Ss Cyril & Methodius Univ, Fac Nat Sci & Math, Inst Phys, Arhimedova 3, Skopje 1000, North Macedonia
[2] Univ Estadual Ponta Grossa, Dept Fis, Av Carlos Cavalcanti 4748, BR-84030900 Ponta Grossa, PR, Brazil
[3] Radiat Safety Directorate, Partizanski Odredi 143,POB 22, Skopje 1020, North Macedonia
[4] Macedonian Acad Sci & Arts, Res Ctr Comp Sci & Informat Technol, Bul Krste Misirkov 2, Skopje 1000, North Macedonia
关键词
DIFFUSION;
D O I
10.1063/1.5079226
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a quantum motion governed by the time-dependent Schrodinger equation on a three dimensional comb structure. We derive the corresponding fractional Schrodinger equations for the reduced probability density functions by projection of the three dimensional comb dynamics in the two- and one-dimensional configuration space. This represents another physical example of a system where fractional calculus emerges. We give closed-form solutions of the corresponding equations for the reduced probability density functions in terms of the Fox H-function, by using the Green's function approach. Published under license by AIP Publishing.
引用
收藏
页数:8
相关论文
共 50 条