Multi-Agent Deep Reinforcement Learning for Sectional AGC Dispatch

被引:17
|
作者
Li, Jiawen [1 ]
Yu, Tao [1 ]
Zhu, Hanxin [1 ]
Li, Fusheng [1 ]
Lin, Dan [1 ]
Li, Zhuohuan [1 ]
机构
[1] South China Univ Technol, Coll Elect Power, Guangzhou 510640, Peoples R China
来源
IEEE ACCESS | 2020年 / 8卷
基金
中国国家自然科学基金;
关键词
Automatic generation control; Security; Power grids; Training; Phasor measurement units; Optimization; Voltage measurement; hierarchical multi-agent deep deterministic policy gradient; sectional AGC dispatch; reinforcement learning; AUTOMATIC-GENERATION CONTROL;
D O I
10.1109/ACCESS.2020.3019929
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Aiming at the problem of coordinating system economy, security and control performance in secondary frequency regulation of the power grid, a sectional automatic generation control (AGC) dispatch framework is proposed. The dispatch of AGC is classified as three sections with the sectional dispatch method. Besides, a hierarchical multi-agent deep deterministic policy gradient (HMA-DDPG) algorithm is proposed for the framework in this paper. This algorithm, considering economy and security of the system in AGC dispatch, can ensure the control performance of AGC. Furthermore, through simulation, the control effect of the sectional dispatch method and several AGC dispatch methods on the Guangdong province power grid system and the IEEE 39 bus system is compared. The result shows that the best effect can be achieved with the sectional dispatch method.
引用
收藏
页码:158067 / 158081
页数:15
相关论文
共 50 条
  • [21] Multi-Agent Deep Reinforcement Learning with Human Strategies
    Thanh Nguyen
    Ngoc Duy Nguyen
    Nahavandi, Saeid
    2019 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT), 2019, : 1357 - 1362
  • [22] Competitive Evolution Multi-Agent Deep Reinforcement Learning
    Zhou, Wenhong
    Chen, Yiting
    Li, Jie
    PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND APPLICATION ENGINEERING (CSAE2019), 2019,
  • [23] Strategic Interaction Multi-Agent Deep Reinforcement Learning
    Zhou, Wenhong
    Li, Jie
    Chen, Yiting
    Shen, Lin-Cheng
    IEEE ACCESS, 2020, 8 : 119000 - 119009
  • [24] Cooperative Exploration for Multi-Agent Deep Reinforcement Learning
    Liu, Iou-Jen
    Jain, Unnat
    Yeh, Raymond A.
    Schwing, Alexander G.
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [25] A review of cooperative multi-agent deep reinforcement learning
    Oroojlooy, Afshin
    Hajinezhad, Davood
    APPLIED INTELLIGENCE, 2023, 53 (11) : 13677 - 13722
  • [26] Multi-Agent Deep Reinforcement Learning for Walker Systems
    Park, Inhee
    Moh, Teng-Sheng
    20TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2021), 2021, : 490 - 495
  • [27] Action Markets in Deep Multi-Agent Reinforcement Learning
    Schmid, Kyrill
    Belzner, Lenz
    Gabor, Thomas
    Phan, Thomy
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2018, PT II, 2018, 11140 : 240 - 249
  • [28] Strategic Interaction Multi-Agent Deep Reinforcement Learning
    Zhou, Wenhong
    Li, Jie
    Chen, Yiting
    Shen, Lin-Cheng
    IEEE Access, 2020, 8 : 119000 - 119009
  • [29] Teaching on a Budget in Multi-Agent Deep Reinforcement Learning
    Ilhan, Ercument
    Gow, Jeremy
    Perez-Liebana, Diego
    2019 IEEE CONFERENCE ON GAMES (COG), 2019,
  • [30] Multi-Agent Deep Reinforcement Learning in Vehicular OCC
    Islam, Amirul
    Musavian, Leila
    Thomos, Nikolaos
    2022 IEEE 95TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2022-SPRING), 2022,