Multi-Agent Deep Reinforcement Learning for Walker Systems

被引:0
|
作者
Park, Inhee [1 ]
Moh, Teng-Sheng [1 ]
机构
[1] San Jose State Univ, Dept Comp Sci, San Jose, CA 95192 USA
关键词
Deep Reinforcement Learning (DRL); Proximal Policy Optimization (PPO); Multi-agent DRL (MADRL);
D O I
10.1109/ICMLA52953.2021.00082
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We applied the state-of-art performance Deep Reinforcement Learning (DRL) algorithm, Proximal Policy Optimization (PPO), to the minimal robot-legs locomotion for the challenging multi-agent, continuous and high-dimensional state-space environments. The main contribution of this work is identifying the potential factors/hyperparameters and their effects on the performance of the multi-agent settings by varying the number of agents. Based on the comprehensive experiments with 2-10 multiwalkers environments, we found that 1) A minibatch size and a sampling reuse ratio (experience replay buffer size containing multiple minibatches) are critical hyperparameters to improve performance of the PPO; 2) Optimal neural network size depends on the number of walkers in the multi-agent environments; and 3) Parameter sharing among multi-agent is a better training strategy than fully independent learning in terms of comparable performance and improved efficiency with reduced parameters consuming less memory.
引用
收藏
页码:490 / 495
页数:6
相关论文
共 50 条
  • [1] HALFTONING WITH MULTI-AGENT DEEP REINFORCEMENT LEARNING
    Jiang, Haitian
    Xiong, Dongliang
    Jiang, Xiaowen
    Yin, Aiguo
    Ding, Li
    Huang, Kai
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 641 - 645
  • [2] Deep reinforcement learning for multi-agent interaction
    Ahmed, Ibrahim H.
    Brewitt, Cillian
    Carlucho, Ignacio
    Christianos, Filippos
    Dunion, Mhairi
    Fosong, Elliot
    Garcin, Samuel
    Guo, Shangmin
    Gyevnar, Balint
    McInroe, Trevor
    Papoudakis, Georgios
    Rahman, Arrasy
    Schafer, Lukas
    Tamborski, Massimiliano
    Vecchio, Giuseppe
    Wang, Cheng
    Albrecht, Stefano, V
    [J]. AI COMMUNICATIONS, 2022, 35 (04) : 357 - 368
  • [3] Multi-agent deep reinforcement learning: a survey
    Sven Gronauer
    Klaus Diepold
    [J]. Artificial Intelligence Review, 2022, 55 : 895 - 943
  • [4] Lenient Multi-Agent Deep Reinforcement Learning
    Palmer, Gregory
    Tuyls, Karl
    Bloembergen, Daan
    Savani, Rahul
    [J]. PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS (AAMAS' 18), 2018, : 443 - 451
  • [5] Multi-agent deep reinforcement learning: a survey
    Gronauer, Sven
    Diepold, Klaus
    [J]. ARTIFICIAL INTELLIGENCE REVIEW, 2022, 55 (02) : 895 - 943
  • [6] Deep Multi-Agent Reinforcement Learning: A Survey
    Liang X.-X.
    Feng Y.-H.
    Ma Y.
    Cheng G.-Q.
    Huang J.-C.
    Wang Q.
    Zhou Y.-Z.
    Liu Z.
    [J]. Zidonghua Xuebao/Acta Automatica Sinica, 2020, 46 (12): : 2537 - 2557
  • [7] Learning to Communicate with Deep Multi-Agent Reinforcement Learning
    Foerster, Jakob N.
    Assael, Yannis M.
    de Freitas, Nando
    Whiteson, Shimon
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [8] Assured Deep Multi-Agent Reinforcement Learning for Safe Robotic Systems
    Riley, Joshua
    Calinescu, Radu
    Paterson, Colin
    Kudenko, Daniel
    Banks, Alec
    [J]. AGENTS AND ARTIFICIAL INTELLIGENCE, ICAART 2021, 2022, 13251 : 158 - 180
  • [9] Multi-agent Deep Reinforcement Learning for Countering Uncrewed Aerial Systems
    Pierre, Jean-Elie
    Sun, Xiang
    Novick, David
    Fierro, Rafael
    [J]. DISTRIBUTED AUTONOMOUS ROBOTIC SYSTEMS, DARS 2022, 2024, 28 : 394 - 407
  • [10] MAGNet: Multi-agent Graph Network for Deep Multi-agent Reinforcement Learning
    Malysheva, Aleksandra
    Kudenko, Daniel
    Shpilman, Aleksei
    [J]. 2019 XVI INTERNATIONAL SYMPOSIUM PROBLEMS OF REDUNDANCY IN INFORMATION AND CONTROL SYSTEMS (REDUNDANCY), 2019, : 171 - 176