Learning to Communicate with Deep Multi-Agent Reinforcement Learning

被引:0
|
作者
Foerster, Jakob N. [1 ]
Assael, Yannis M. [1 ]
de Freitas, Nando [1 ,2 ,3 ]
Whiteson, Shimon [1 ]
机构
[1] Univ Oxford, Oxford, England
[2] Canadian Inst Adv Res, CIFAR NCAP Program, London, England
[3] Google DeepMind, London, England
来源
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016) | 2016年 / 29卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider the problem of multiple agents sensing and acting in environments with the goal of maximising their shared utility. In these environments, agents must learn communication protocols in order to share information that is needed to solve the tasks. By embracing deep neural networks, we are able to demonstrate end-to-end learning of protocols in complex environments inspired by communication riddles and multi-agent computer vision problems with partial observability. We propose two approaches for learning in these domains: Reinforced Inter-Agent Learning (RIAL) and Differentiable Inter-Agent Learning (DIAL). The former uses deep Q-learning, while the latter exploits the fact that, during learning, agents can backpropagate error derivatives through (noisy) communication channels. Hence, this approach uses centralised learning but decentralised execution. Our experiments introduce new environments for studying the learning of communication protocols and present a set of engineering innovations that are essential for success in these domains.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Learning to Communicate for Mobile Sensing with Multi-agent Reinforcement Learning
    Zhang, Bolei
    Liu, Junliang
    Xiao, Fu
    WIRELESS ALGORITHMS, SYSTEMS, AND APPLICATIONS, WASA 2021, PT II, 2021, 12938 : 612 - 623
  • [2] HALFTONING WITH MULTI-AGENT DEEP REINFORCEMENT LEARNING
    Jiang, Haitian
    Xiong, Dongliang
    Jiang, Xiaowen
    Yin, Aiguo
    Ding, Li
    Huang, Kai
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 641 - 645
  • [3] Deep reinforcement learning for multi-agent interaction
    Ahmed, Ibrahim H.
    Brewitt, Cillian
    Carlucho, Ignacio
    Christianos, Filippos
    Dunion, Mhairi
    Fosong, Elliot
    Garcin, Samuel
    Guo, Shangmin
    Gyevnar, Balint
    McInroe, Trevor
    Papoudakis, Georgios
    Rahman, Arrasy
    Schafer, Lukas
    Tamborski, Massimiliano
    Vecchio, Giuseppe
    Wang, Cheng
    Albrecht, Stefano, V
    AI COMMUNICATIONS, 2022, 35 (04) : 357 - 368
  • [4] Multi-agent deep reinforcement learning: a survey
    Sven Gronauer
    Klaus Diepold
    Artificial Intelligence Review, 2022, 55 : 895 - 943
  • [5] Deep Multi-Agent Reinforcement Learning: A Survey
    Liang X.-X.
    Feng Y.-H.
    Ma Y.
    Cheng G.-Q.
    Huang J.-C.
    Wang Q.
    Zhou Y.-Z.
    Liu Z.
    Zidonghua Xuebao/Acta Automatica Sinica, 2020, 46 (12): : 2537 - 2557
  • [6] Lenient Multi-Agent Deep Reinforcement Learning
    Palmer, Gregory
    Tuyls, Karl
    Bloembergen, Daan
    Savani, Rahul
    PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS (AAMAS' 18), 2018, : 443 - 451
  • [7] Multi-agent deep reinforcement learning: a survey
    Gronauer, Sven
    Diepold, Klaus
    ARTIFICIAL INTELLIGENCE REVIEW, 2022, 55 (02) : 895 - 943
  • [8] A Transfer Learning Framework for Deep Multi-Agent Reinforcement Learning
    Yi Liu
    Xiang Wu
    Yuming Bo
    Jiacun Wang
    Lifeng Ma
    IEEE/CAA Journal of Automatica Sinica, 2024, 11 (11) : 2346 - 2348
  • [9] A Transfer Learning Framework for Deep Multi-Agent Reinforcement Learning
    Liu, Yi
    Wu, Xiang
    Bo, Yuming
    Wang, Jiacun
    Ma, Lifeng
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2024, 11 (11) : 2346 - 2348
  • [10] Communicate with Traffic Lights and Vehicles Based on Multi-Agent Reinforcement Learning
    Wu, Qiang
    Zhi, Peng
    Wei, Yongqiang
    Zhang, Liang
    Wu, Jianqing
    Zhou, Qingguo
    Zhou, Qiang
    Gao, Pengfei
    PROCEEDINGS OF THE 2021 IEEE 24TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN (CSCWD), 2021, : 843 - 848