Strategic Interaction Multi-Agent Deep Reinforcement Learning

被引:0
|
作者
Zhou, Wenhong [1 ]
Li, Jie [1 ]
Chen, Yiting [1 ]
Shen, Lin-Cheng [1 ]
机构
[1] Natl Univ Def Technol, Coll Intelligence Sci & Technol, Changsha 410073, Peoples R China
来源
IEEE ACCESS | 2020年 / 8卷
关键词
Multi-agent deep reinforcement learning; scalability; local interaction; large scale;
D O I
10.1109/ACCESS.2020.3005734
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Despite the proliferation of multi-agent deep reinforcement learning (MADRL), most existing typical methods do not scale well to the dynamics of agent populations. And as the population increases, the dimensional explosion of joint state-action and the complex interaction between agents make learning extremely cumbersome, which poses the scalability challenge for MADRL. This paper focuses on the scalability issue of MADRL with homogeneous agents. In a natural population, local interaction is a more feasible mode of interplay rather than global interaction. And inspired by the strategic interaction model in economics, we decompose the value function of each agent into the sum of the expected cumulative rewards of the interaction between the agent and each neighbor. This novel value function is decentralized and decomposable, which enables it to scale well to the dynamic changes in the number of large-scale agents. Hereby, the corresponding strategic interaction reinforcement learning algorithm (SIQ), is proposed to learn the optimal policy of each agent, wherein a neural network is employed to estimate the expected cumulative reward for the interaction between the agent and one of its neighbors. We test the validity of the proposed method in a mixed cooperative-competitive confrontation game through numerical experiments. Furthermore, the scalability comparison experiments illustrate that the scalability of the SIQ algorithm outperforms the independent learning and mean field reinforcement learning algorithms in multiple scenarios with different and dynamically changing numbers.
引用
收藏
页码:119000 / 119009
页数:10
相关论文
共 50 条
  • [1] Strategic Interaction Multi-Agent Deep Reinforcement Learning
    Zhou, Wenhong
    Li, Jie
    Chen, Yiting
    Shen, Lin-Cheng
    [J]. IEEE Access, 2020, 8 : 119000 - 119009
  • [2] Deep reinforcement learning for multi-agent interaction
    Ahmed, Ibrahim H.
    Brewitt, Cillian
    Carlucho, Ignacio
    Christianos, Filippos
    Dunion, Mhairi
    Fosong, Elliot
    Garcin, Samuel
    Guo, Shangmin
    Gyevnar, Balint
    McInroe, Trevor
    Papoudakis, Georgios
    Rahman, Arrasy
    Schafer, Lukas
    Tamborski, Massimiliano
    Vecchio, Giuseppe
    Wang, Cheng
    Albrecht, Stefano, V
    [J]. AI COMMUNICATIONS, 2022, 35 (04) : 357 - 368
  • [3] Multi-agent deep reinforcement learning: a survey
    Sven Gronauer
    Klaus Diepold
    [J]. Artificial Intelligence Review, 2022, 55 : 895 - 943
  • [4] HALFTONING WITH MULTI-AGENT DEEP REINFORCEMENT LEARNING
    Jiang, Haitian
    Xiong, Dongliang
    Jiang, Xiaowen
    Yin, Aiguo
    Ding, Li
    Huang, Kai
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 641 - 645
  • [5] Multi-agent deep reinforcement learning: a survey
    Gronauer, Sven
    Diepold, Klaus
    [J]. ARTIFICIAL INTELLIGENCE REVIEW, 2022, 55 (02) : 895 - 943
  • [6] Lenient Multi-Agent Deep Reinforcement Learning
    Palmer, Gregory
    Tuyls, Karl
    Bloembergen, Daan
    Savani, Rahul
    [J]. PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS (AAMAS' 18), 2018, : 443 - 451
  • [7] Deep Multi-Agent Reinforcement Learning: A Survey
    Liang, Xing-Xing
    Feng, Yang-He
    Ma, Yang
    Cheng, Guang-Quan
    Huang, Jin-Cai
    Wang, Qi
    Zhou, Yu-Zhen
    Liu, Zhong
    [J]. Zidonghua Xuebao/Acta Automatica Sinica, 2020, 46 (12): : 2537 - 2557
  • [8] Learning to Communicate with Deep Multi-Agent Reinforcement Learning
    Foerster, Jakob N.
    Assael, Yannis M.
    de Freitas, Nando
    Whiteson, Shimon
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [9] MAGNet: Multi-agent Graph Network for Deep Multi-agent Reinforcement Learning
    Malysheva, Aleksandra
    Kudenko, Daniel
    Shpilman, Aleksei
    [J]. 2019 XVI INTERNATIONAL SYMPOSIUM PROBLEMS OF REDUNDANCY IN INFORMATION AND CONTROL SYSTEMS (REDUNDANCY), 2019, : 171 - 176
  • [10] Multi-agent reinforcement learning for strategic bidding in power markets
    Tellidou, Athina C.
    Bakirtzis, Anastasios G.
    [J]. 2006 3RD INTERNATIONAL IEEE CONFERENCE INTELLIGENT SYSTEMS, VOLS 1 AND 2, 2006, : 400 - 405