Strategic Interaction Multi-Agent Deep Reinforcement Learning

被引:0
|
作者
Zhou, Wenhong [1 ]
Li, Jie [1 ]
Chen, Yiting [1 ]
Shen, Lin-Cheng [1 ]
机构
[1] Natl Univ Def Technol, Coll Intelligence Sci & Technol, Changsha 410073, Peoples R China
来源
IEEE ACCESS | 2020年 / 8卷
关键词
Multi-agent deep reinforcement learning; scalability; local interaction; large scale;
D O I
10.1109/ACCESS.2020.3005734
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Despite the proliferation of multi-agent deep reinforcement learning (MADRL), most existing typical methods do not scale well to the dynamics of agent populations. And as the population increases, the dimensional explosion of joint state-action and the complex interaction between agents make learning extremely cumbersome, which poses the scalability challenge for MADRL. This paper focuses on the scalability issue of MADRL with homogeneous agents. In a natural population, local interaction is a more feasible mode of interplay rather than global interaction. And inspired by the strategic interaction model in economics, we decompose the value function of each agent into the sum of the expected cumulative rewards of the interaction between the agent and each neighbor. This novel value function is decentralized and decomposable, which enables it to scale well to the dynamic changes in the number of large-scale agents. Hereby, the corresponding strategic interaction reinforcement learning algorithm (SIQ), is proposed to learn the optimal policy of each agent, wherein a neural network is employed to estimate the expected cumulative reward for the interaction between the agent and one of its neighbors. We test the validity of the proposed method in a mixed cooperative-competitive confrontation game through numerical experiments. Furthermore, the scalability comparison experiments illustrate that the scalability of the SIQ algorithm outperforms the independent learning and mean field reinforcement learning algorithms in multiple scenarios with different and dynamically changing numbers.
引用
收藏
页码:119000 / 119009
页数:10
相关论文
共 50 条
  • [31] Multi-agent deep reinforcement learning strategy for distributed energy
    Xi, Lei
    Sun, Mengmeng
    Zhou, Huan
    Xu, Yanchun
    Wu, Junnan
    Li, Yanying
    [J]. MEASUREMENT, 2021, 185
  • [32] Multi-Agent Deep Reinforcement Learning for Distributed Load Restoration
    Linh Vu
    Tuyen Vu
    Thanh Long Vu
    Srivastava, Anurag
    [J]. IEEE TRANSACTIONS ON SMART GRID, 2024, 15 (02) : 1749 - 1760
  • [33] Competitive Multi-Agent Deep Reinforcement Learning with Counterfactual Thinking
    Wang, Yue
    Wan, Yao
    Zhang, Chenwei
    Bai, Lu
    Cui, Lixin
    Yu, Philip S.
    [J]. 2019 19TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2019), 2019, : 1366 - 1371
  • [34] Bayesian Action Decoder for Deep Multi-Agent Reinforcement Learning
    Foerster, Jakob N.
    Song, H. Francis
    Hughes, Edward
    Burch, Neil
    Dunning, Iain
    Whiteson, Shimon
    Botvinick, Matthew M.
    Bowling, Michael
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [35] Cooperative Multi-Agent Deep Reinforcement Learning in Soccer Domains
    Ocana, Jim Martin Catacora
    Riccio, Francesco
    Capobianco, Roberto
    Nardi, Daniele
    [J]. AAMAS '19: PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS, 2019, : 1865 - 1867
  • [36] Important Scientific Problems of Multi-Agent Deep Reinforcement Learning
    Sun, Chang-Yin
    Mu, Chao-Xu
    [J]. Zidonghua Xuebao/Acta Automatica Sinica, 2020, 46 (07): : 1301 - 1312
  • [37] Transform networks for cooperative multi-agent deep reinforcement learning
    Hongbin Wang
    Xiaodong Xie
    Lianke Zhou
    [J]. Applied Intelligence, 2023, 53 : 9261 - 9269
  • [38] Transform networks for cooperative multi-agent deep reinforcement learning
    Wang, Hongbin
    Xie, Xiaodong
    Zhou, Lianke
    [J]. APPLIED INTELLIGENCE, 2023, 53 (08) : 9261 - 9269
  • [39] Eavesdropping Game Based on Multi-Agent Deep Reinforcement Learning
    Guo, Delin
    Tang, Lan
    Yang, Lvxi
    Liang, Ying-Chang
    [J]. 2022 IEEE 23RD INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATION (SPAWC), 2022,
  • [40] Multi-agent Deep Reinforcement Learning for Zero Energy Communities
    Prasad, Amit
    Dusparic, Ivana
    [J]. PROCEEDINGS OF 2019 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES EUROPE (ISGT-EUROPE), 2019,